
. . . for Solving and Optimizing Engineering Models

Sage
User’s Guide
SCFusion Model Class

David Gedeon

Electronic Version for Acrobat Reader

Sage v13 Edition

Gedeon Associates

16922 South Canaan Road
Athens, OH 45701

February 1, 2025

Copyright c© 1999–2025 by Gedeon Associates
Typeset with the LATEX document preparation system under pcTEX software
Hyperlinks produced with LATEX Hyperref package

ii

Preface

User’s Guide and Model Classes

This manual includes the Sage User’s Guide and Model-Class Reference Guide
for the SCFusion model class introduced in Sage version 13. The SCFusion
model class (Stirling-Cycle Fusion) subsumes previous stirling-cycle, pulse-tube
and low-T cooler model classes into a single model class going forward. It
is backward compatible with those previous model classes in that it can read
*.stl, *.ptb and *.ltc model files, automatically converting them to *.scfn files.
SCFusion uses a 4-letter file extension because 3-letter extension like *.scf were
already spoken for by other applications.

Manual Divisions

Parts I and II document the Sage software distribution files, the graphical
user interface and general structure common to all model components
running under the Sage modeling and optimization framework.

Part III documents the model component classes available in the SCFusion
model class, including those software classes that have been deprecated un-
der version 13. Deprecated means that they are no longer recommended,
usually because they have been superseded by classes with improved func-
tionality, but they are still available for backward file compatibility.

New in Version 13

On the software side, the Sage user interface and model components have contin-
ued to evolve since the previous version. Changes since version 12 documented
in this manual are:

Sage GUI The Sage form now groups the EditForm and DisplayForm within
its client area instead of spawning them as independent windows, making
it easier to locate and manage them.

Explore Custom Variables Dialog The display can now be filtered to show
only inputs, outputs, recasts, CAD-tagged or log-tagged variables. New

iii

iv PREFACE

display icons make it easier to distinguish among the different types of
customized variables.

Solve Status Dialog Now monitors line-step reductions that prevent solved
variables stepping beyond allowed limits. For example temperatures in
a 4 K cooler going negative. Identifies the responsible variable and the
required step reduction, thereby pointing you toward the part of the model
causing convergence difficulty.

Copy-and-Paste Model component copy and paste tools now support copy-
ing from one Sage instance and pasting into another. Previously it only
worked by opening the source model to copy, then opening the destination
model to paste, without closing the Sage application.

Grid Plots For 2D plots a new animation feature allows you to scroll through
2D plot curves sequentially — i.e. to plot individual position data curves
at successive time nodes or individual time data curves at successive po-
sition nodes.

Independent Isothermal Heat Sources New isothermal-surface and line-
heat-source components set temperature according to independent temperature-
distribution inputs that can be recast in terms of higher-level user-defined
inputs as a means for changing temperature boundary conditions of several
lower-level components at once. Previous isothermal heat source compo-
nents set the temperature according to the non-recastable Tinit tempera-
ture distribution inherited from the parent component.

Interpolated Components A new descendant of the simple transducer com-
ponent interpolates the transduction force coefficient Cf (x) (a function
of position) from a set of cubic-spline data-pair inputs (xi, Cfi). A new
interpolated spring component does a similar thing for spring force F (x)
from data-pair inputs (xi, Fi).

Volumetric Compressor A new component added for modeling positive-displacement
compressors of the type used in GM cryocoolers. Specifies inlet volumet-
ric flow rate and clearance volume as inputs, rather than mass flow rate,
thereby relating more directly to the specifications of an actual compres-
sor and automatically adjusting mass flow rate as a function of upstream
and downstream pressures, like a real compressor.

New Refprop Fluids added to the default gas data file: argon, carbon diox-
ide, methane, propane, isobutane, water. Existing helium, hydrogen and
nitrogen are reformulated with improved bubble-line smoothing (below).

Bubble Line Property discontinuities at the bubble line, where vapor slams
into the liquid phase, have plagued Sage convergence since the first refprop
fluids were introduced in version 8 (2011). Improvements to P (v) isotherm
smoothing now allow Sage models to converge better through the bubble

v

line, allowing Sage to model a complete vapor-compression refrigeration
cycle using a fluid like isobutane.

Duct Turbulence Model Revised and calibrated to experimental data, now
with separate oscillatory and steady-flow branches and less spurious noise
for highly non-sinusoidal flows common in GM cryocoolers and such.

Containers An issue within Parallel and Multi-Length containers prevented
distributed conductors or conductive surfaces of annulus flow paths within
composite piston-cylinder components from making y heat-transfer con-
nections with other components of the container. This has been fixed.

Soft Ferromagnetic Materials To minimize glitches in iron-core solenoid in-
ductance as a function of coil current, revised approximate magnetization
function to eliminate slope discontinuity.

Moving Magnetic Containers Abandoned magnetic force scaling as a means
of conserving energy relative to the energy entering from surrounding
poles. Electromagnetic actuator models now converge more reliably at
the cost of a small energy leak. Fixed a minor issue with magnetic flux
distribution in voice-coil actuators that produced erroneous induction val-
ues.

New in Version 12

Changes since version 11 are:

PV power flows New built-in variables PVNeg and PVPos calculate average
PV power flow rates at the negative and positive inlets of gas domain
components.

Complex Nusselt numbers In solid and gas domains that calculate phase-
shifted heat transfer and flow friction using correlations derived from sim-
plified linear equations with complex exponential solutions, the formu-
lation has been revised to filter out spurious higher harmonics. This is
especially significant in low-temperature cryocooler models with highly
non-sinusoidal temperature solutions and low solid heat capacities where
heat-transfer higher harmonics without any physical basis could destabi-
lize the solution or produce incorrect results.

Time-Grid Heat Connections New time-ring heat-source and heater com-
ponents allow you to impose time-varying temperature or heat flow bound-
ary conditions on the positive and negative ends of thick-wall, thin-wall
or rigorous-surface thermal solids. Such connections impose temperature
continuity at each time node, rather than just time-mean temperature
continuity, which can be useful if the solid heat capacity is relatively low,
allowing large time-varying temperatures.

vi PREFACE

Finding Example Models A new Help → Example Models menu item makes
it easy to find example models distributed with the Sage application. It
launches Windows File Explorer, open to the folder where example models
and documentation are stored.

Low Temperature Regenerators The solid energy equation for the quasi-
adiabatic surfaces that represent regenerator matrices now resolves in-
stantaneous changes in specific heat rather than the time-averaged value
used previously. This improves accuracy for regenerators operating be-
low 10 K where solid specific heat is both small and highly variable with
temperature.

Optimization Status Dialog Now includes a column of attempted step values
displayed next to optimized values at every iteration. Potentially useful
for spotting variables causing slow or erratic optimization progress.

CAD variables User-defined input and output variables can now be marked as
CAD variables and written to a tab-delimited text file with the new File →
Save CAD variables menu item. CAD variables are separate from logged
variables tagged to appear in Optimization and Mapping logs. CAD vari-
ables are intended for driving key dimensions of CAD solid models.

Fourier series inputs Coefficients are now entered within cells of a string
grid, rather than as individual data pairs. There is a new dialog for
entering discrete function values rather than coefficients, and a means to
toggle between coefficient and discrete entry formats.

Solid data The list of available thermal-solid materials contains some new ma-
terials like 6063 aluminum, nylon, kapton, and common low-temperature
regenerator materials Er-Ni, Er3-Co, Er3-Ni, Ho-Cu2, Gd2-O2-S (GOS).
Thermal properties for existing material have been updated according to
NIST data at cryogenic temperatures. Copy and pasting columns of prop-
erty data is now supported in the SCFProp utility used for translating
property data into Sage format.

Renaming Model Components In-line editing capability now supported for
model component names displayed in Edit Window.

Entering Property Data Solid or gas properties that vary with temperature
like conductivity or specific heat are now entered within cells of a string
grid, rather than as individual data pairs. Copy and pasting data from a
spreadsheet is now supported.

Stick-Slip Dampers New stick-slip damper components approximate the fric-
tional drag of a sliding object moving over a surface.

Grid Plots Now shown as modeless dialogs so you can view more than one
plot at a time and keep the plot windows open while doing other things
— e.g. monitoring solved variables during the solution process. A new

vii

option adds point markers at grid node values, giving a better indication
of actual solved values for time grids. If there is more than one grid in the
selected component you can select the one to be plotted from a listbox.
Previously only the default grid was available.

Diode A new diode component extends the options for modeling linear alter-
nator electrical loads.

Solve Status Dialog Scroll bars added to view long exception error messages.

Explore Custom Variables Dialog There is now a View Interpolation but-
ton in the dialog to display the values of cubic-spline or Fourier series
recast variables as continuous functions.

Generic Cylinders The gas-to-wall heat transfer formulation now converges
more reliable for the case of an isolated volume without gas flow connec-
tions (e.g. a simple gas spring model) and more closely approximates the
theoretical value.

RefpropToSage Revised pressure smoothing in the two-phase region from ex-
ponential smoothing at bubble- and dew-point corners to linear smoothing
at dew-point corner. Updated refprop gases in GasLTC.dta.

An exhaustive list of software improvements starting from the earliest
days of Sage, is found in the file UpgradeHistory.pdf. This file is located in
the Docs\UpgradeHistory subdirectory under your Sage installation directory
(default c:\Program Files (x86)\Gedeon\Sage[x]) or may be downloaded from the
Sage website at www.sageofathens.com. Each software improvement documented
there is generally associated with a revision in this reference manual.

viii PREFACE

Part I

Getting Started with Sage
Software

1

Chapter 1

Installation

1.1 Computer Requirements

Sage runs under the Microsoft Windows operating system, most recently in-
cluding Windows 10 and 11. A high resolution (≥ 17 in) display monitor is
convenient for editing complex models.

1.2 Installing

The correct installation procedure will update the Windows Registry and ensure
that you can easily un-install your application later. Sage software is distributed
as a single executable setup file (e.g. SageSCF.exe). You can run the setup file
using the Add/Remove Programs utility located in the Windows Control Panel.
Or just double-click on the file in Windows File Explorer or the equivalent.
Then follow the on-screen instructions.

The Sage files that are installed on your computer are selected according
to the license ID and product key you enter in the “enter license information”
dialog that pops up during the installation process.

1.3 Un-Installing

The automatic un-installing process will remove all installed files and update
the Windows Registry. Files created by you, either knowingly (data files) or
invisibly (program initialization files) will remain in place. So afterwards, you
might want to use Windows File Explorer to manually delete files from the
installation directory or whatever directory you stored data files in.

Removal Activate Add/Remove Programs in the Control Panel, select the
Sage application from the listbox and follow the prompts.

3

4 CHAPTER 1. INSTALLATION

1.4 Files

The default installation directory is c:\Program Files (x86)\Gedeon\Sage[x]. Within
the installation directory are a number of subdirectories. The first two listed
below are part of the normal executable software distribution. The last two are
part of the DLL or source-code distribution, licensed separately.

\Apps Contains executable program files and sample data files in subdirecto-
ries [ModelClass]\Bin and [ModelClass]\Samples, where [ModelClass] is the
name of the installed application. You can and should store your own
data files in whatever directory you choose. For example, you might use a
main directory ..\Sagework, with subdirectories as needed to keep things
organized.

\Docs contains document files (generally in Adobe Acrobat pdf format) includ-
ing manual, technical notes, source-code instructions, the Sage upgrade
history, and so forth.

\DLL Contains dynamic-link libraries and documentation in the [ModelClass]
subdirectories.

\Source Contains source code common to all Sage applications in the Dialogs,
Models, and Units subdirectories and for particular model classes in the
SageApps\[ModelClass] subdirectories.

Each Sage application remembers from session to session such things as win-
dow dimensions, scroll positions, file folders. Some of this information is stored
in an application-specific file named [ModelClass].ini, stored in the Windows
CSIDL LOCAL APPDATA folder. Some is stored in a project-specific file
AName.*in, in the same folder where your data file is stored, where AName
is the name of your input file and .*in is the file extension particular to the
application you are running. The application-specific file is updated whenever
the program closes. The project-specific file when you save the data file. Both
are regenerated automatically with default values if they are lost.

Chapter 2

Overview

2.1 What is Sage

Sage is a graphical interface that supports simulation and optimization of an
underlying class of engineering models. The underlying model class represents
something like a spring-mass-damper resonant system, a stirling-cycle machine,
or anything else that has been properly coded to work with Sage.

The model classes of Sage are not just fixed-geometry models. Each may
contain an unlimited number of variations or instances. A model instance,
or just plain model for short, is a particular collection of component building
blocks, connected and assembled in a particular way, with particular data values,
forming a complete system representing whatever it is you are trying to simulate.
In other words, you don’t just add numerical data values within the confines
of a presumed geometry. You may modify the geometry too. Each particular
instance of a given model class resides in its own disk file with a unique name
but common file extension particular to the Sage application you are running.

Each model class comes with its own executable file [ModelClass].exe for
dealing with its own instances. Running a model-class executable file brings up
the common Sage graphical interface which allows you to:

• create new or read existing model files

• enter numerical data

• edit model geometry

• specify optimization problems

• solve, map or optimize the model

• view, save or print a listing

These functions are all controlled by menu commands or toolbar controls.

5

6 CHAPTER 2. OVERVIEW

2.2 What are Models

Models are more than the sum of their component building blocks. The way
the components are organized and connected together is important too.

2.2.1 Models as Trees

Within Sage, model components are organized logically in a hierarchical tree
structure. For example, the root model-component of a stirling machine con-
tains a number of sub-components representing pistons, heat exchangers, and
the like. These sub-components may themselves contain sub-sub-components.
And so forth. The natural way to organize this in terms of child (sub) compo-
nents branching off of their parent components — as trees in computer-science
parlance — not unlike the directory structure of your computer file system.

The tree-structured point of view is especially convenient for organizing a
model’s file-storage stream or output listing. It does not reveal much, however,
about the boundary-interconnections among model components, which are cru-
cial to understanding the functioning of the model as a whole.

2.2.2 Models as Interconnected Systems

An alternate way to present models is through their boundary interconnections,
which are the abstractions by which quantities like fluid flow, force, heat flux,
etc., pass from one model component to another. A special form, known as the
edit form, presents the model from this point of view. In the edit form, each
model component is represented by an icon, with sibling components (belong-
ing to a common parent component) grouped on the same page of the form.
Boundary connections among components are indicated graphically by match-
ing numbered arrows attached to the individual model components. In this
way it is possible to understand the physical connections among components.
An analogy would be this: A catalog of parts, even if tree-structured, tells us
little about how an automobile works. We also need to know that the wheels
are connected to the engine through clutch, gearbox and differential, before we
begin to understand the whole machine. So it is with Sage. To understand your
model you must take some time to delve through its interconnections.

2.3 Numerical Input and Output

Model components are self-contained entities. As such they manage their own
inputs and outputs. Continuing with the automobile analogy: If you want to
know what a wheel is doing, ask the wheel.

In Sage, if you want to specify input data for a model component, you do so
directly within that model component. And if you want to find the output for
a model component, you look within that same component. One ramification
of this is that output listings are organized differently than you may be used to.

2.4. SOLVING, MAPPING AND OPTIMIZING 7

Instead of finding all similar quantities from the whole model listed together, you
find a sequence of component sub-listings following each other in hierarchical
order. A table of contents at the beginning makes it easy to navigate through
the listing. Once you get the hang of it you will find it quite easy to home in
on a particular component of interest and ignore the rest.

2.4 Solving, Mapping and Optimizing

An important thing to do with models is solve them. After you modify a model’s
numerical inputs, some of its numerical outputs may no longer be valid. This
is because models are defined in terms of implicit relationships among variables
which must be iteratively solved. Solving is a menu activated process that brings
numerical outputs back into sync for the whole model hierarchy simultaneously.

You can also map your model, another menu-activated process available after
you have selected a number of input variables to be automatically stepped over
a range of values. The stepping sequence is that which would be produced by
a nested loop structure. After each step, the model is automatically solved and
selected outputs are stored in a disk file for later inspection. More details on
mapping are in chapter 5.

Yet another menu-activated process is optimization, which is what you do af-
ter you have specified an optimization problem — involving optimized variables,
constraints and an objective function. Unlike mapping, which is an exhaustive
investigation of a broad area, an optimization is more like a locally-guided walk
to the top of a hill. At each step of the way the model is solved and selected
outputs are stored in a disk file. More details on optimization are in chapter 6

You can find out more about what’s going on behind the scenes during
solving and optimizing in chapter 11.

8 CHAPTER 2. OVERVIEW

Part II

Sage General Reference

9

Chapter 3

Menu Commands

The important thing to know about menu commands is that they are often keyed
to the model component currently active. An active model component is the
one currently selected in the display or edit form, or whose caption within the
edit form is highlighted. You can select multiple model components in the edit
form by holding down the shift key while mouse clicking on them or dragging a
selection rectangle over them. In that case the active model component is the
one most recently selected.

Summarized in this chapter are only those menu commands unique to Sage.
Common Windows menu commands are not listed.

3.1 File

The file commands generally have something to do with operations involving
disk files, generally for the entire model as a whole.

3.1.1 File|New

Creates a new model instance belonging to a particular model class and puts
up an empty edit form ready to accept components from the palette.

3.1.2 File|Open

Opens a existing model instance file.

3.1.3 File|Save

Saves the current model instance under the existing file name.

11

12 CHAPTER 3. MENU COMMANDS

3.1.4 File|Save As

Allows you to change the file name of the current model instance before saving.
Generally used when you want to make a change but save the old model too.
As of version 8 the “Save as type” selection list in the save-as dialog allows
you to save under a previous stream format, currently limited to version 7.
The resulting output file can be read by the previous version of Sage but any
new model component classes or variables added since that version will not be
included in the stream. If your model contains components not supported in the
previous version you will be asked to manually remove them before continuing.
Once saved as a previous version subsequent saves will also be in that previous
version until you change the type selection in the save-as dialog.

3.1.5 File|Listing

Opens a dialog that shows a text listing of input and output values for all com-
ponents of the model in its present state. Components are listed in hierarchical
tree order with a table of contents at the top. The dialog includes check boxes
that allow you to select various categories of output to appear in the listing,
search capability, text formatting functionality and menu items for printing the
listing or saving it to a file in rich-text format.

3.1.6 File|Save Solution Grid

Creates a file containing detailed solution variables for any computational grids
used by the model focused in the display or edit form and its connectors. In-
cludes the grids of child model components (components that appear in lower-
level windows of the edit form) and their connectors.

3.1.7 File|Save Log Variables

Creates a file containing all user-defined inputs and outputs selected to appear
in log files. You so designate a user variable by checking the Write to Log
file check-box in the user-variable input dialog or in the Tools|Explore Custom
Variables dialog. Log-file tagged user-variables are indicated with a * prefix in
the selection dialog list box of the Specify|User Inputs or Specify|User Variables
dialogs.

3.1.8 File|Save CAD Variables

Similar to File|Save Log Variables, except for user-defined inputs and outputs
with the CAD variable check-box selected in the user-variable input dialog or
in the Tools|Explore Custom Variables dialog. CAD variables are intended for
driving key dimensions of CAD solid models. CAD variables are indicated with
a ^ prefix in the selection dialog list box of the Specify|User Inputs or Specify|User
Variables dialogs.

3.2. DISPLAY 13

3.1.9 File|Save Embedded Properties

Displays a selection list of all materials (those with unique names) embedded
in the entire model and allows you to save the selected material’s properties
to an individual data file. This is useful if your default property data file (see
chapter 28) does not contain that particular material. You can then use the
SCFProp utility to append the saved data file to the appropriate property data
file where it will then be available in the input selection list for any named
material variable of the model.

3.2 Display

The display commands pertain to the display form which appears to the right
within the main Sage form. The display form shows textual information for
selected model components.

3.2.1 Display|Add Page

Adds to the display form a page (or pages) for an particular model component
selected from a model-tree selection dialog.

3.2.2 Display|Remove Page

Removes the currently selected page from the display form. Removing a page
does not affect the underlying model component that was displayed.

3.2.3 Display|Remove All

Clears all pages in the display form.

3.2.4 Display|Print Display

Prints the contents of the currently selected page in the display form.

3.3 Edit

The edit commands pertain to the edit form which appears to the left within
the main Sage form.

3.3.1 Edit|Select All

Selects all model components in the edit form.

14 CHAPTER 3. MENU COMMANDS

3.3.2 Edit|Up Connector

Moves up the highlighted connector arrow(s) one level in the model hierarchy
toward the root, enabling you to connect it to a mate at that level. To highlight
a connector arrow click on it. Hold down the shift key to highlight many.

3.3.3 Edit|Down Connector

Opposite of the up command.

3.3.4 Edit|Cut Model(s)

Removes the currently selected model components from the edit form to a clip-
board of sorts, as a means of deleting them with undo capability. Available
only if the selected components are not connected to other model components
outside the group. Only the most recently cut model components can be pasted
back.

3.3.5 Edit|Copy Model(s)

Copies the currently selected model components to the clip-board but does not
remove them from the edit form. Useful for cloning model components, including
their child components.

3.3.6 Edit|Paste Model(s)

Pastes model components, including child components, from the clip board to
the edit form. Multiple pastings are possible to undelete or clone model compo-
nents. The paste function works for pasting model components into the parent
component originally copied from or a different parent — possibly in a different
model file. This allows you to create a new model file by copying components
from one or more existing model files. The only restriction is that the paste
parent be capable of supporting the copy. In other words, the paste parent
must contain seeds in its child-creation palette of the same class types as the
components to be pasted.

3.3.7 Edit|Delete Model(s)

Deletes the currently selected model components in the edit form. Available
only if the selected components are not connected to other model components
outside the group.

3.3.8 Edit|Change Bitmap

Launches a dialog that permits loading a new bitmap image for the active model
component from a disk file or restoring the default image.

3.4. SCAN 15

3.3.9 Edit|Print Form

Prints the edit form as it appears on the display monitor.

3.4 Scan

For reviewing or specifying information for the whole model sub-tree beginning
with the active model component. If the root model component is active then
Scan includes the whole model hierarchy.

3.4.1 Scan|Input Values

Scans and allows modification of numerical inputs.

3.4.2 Scan|User Inputs

Scans and allows modification of user-defined inputs.

3.4.3 Scan|User Variables

Scans and allows modification of user-defined outputs.

3.4.4 Scan|Recast Variables

Scans and allows modification of recast inputs.

3.4.5 Scan|Mapped Variables

Scans and allows modification of variables stepped in the map process.

3.4.6 Scan|Optimized Variables

Scans and allows modification variables solved in the optimize process.

3.4.7 Scan|Constraints

Scans and allows modification of constraints.

3.4.8 Scan|Comments

Scans and allows modification of comments.

3.5 Specify

For specifying information for the active model component only.

16 CHAPTER 3. MENU COMMANDS

3.5.1 Specify|Input Values

For numerical data input or modification.

3.5.2 Specify|User Defined Inputs

For creating and modifying special user-defined inputs. See chapter 4.

3.5.3 Specify|User Defined Variables

For creating and modifying special user-defined outputs. See chapter 4. In the
definition dialog, checking the ”write to log file” box tags the variable so it will
appear in mapping or optimization log files.

3.5.4 Specify|Recast Variables

For recasting independent input variables as dependent variables, defined in
terms of an algebraic expression involving other model variables. See chapter 4.

3.5.5 Specify|Mapped Variables

For selecting variables to be stepped in the map process.

3.5.6 Specify|Optimized Variables

For selecting variables to be solved in the optimize process.

3.5.7 Specify|Constraints

For specifying equality or inequality constraints for the optimize process.

3.5.8 Specify|Objective Function

For specifying the objective function for the optimize process.

3.5.9 Specify|Rename

For changing the name of a model component. As of v12, model component
names can also be changed by clicking on the name caption beneath the model
component icon in the edit window and editing the text directly.

3.5.10 Specify|Comment

For entering an optional comment for a model component. A comment is a text
string of arbitrary length, possibly containing multiple lines. Comments appear
in the display window or listing.

3.6. PROCESS 17

3.5.11 Specify|Child-Model Order

For changing the order in which sibling model components appear in the model
listing and certain dialog boxes.

3.5.12 Specify|Plot Solution Grid

Shows an interactive dialog that plots the current computational grid, if any, of
the selected model component, as illustrated below.

You can select which of possibly several different state variables to plot, specify
either time or position as the variable along the horizontal axis, and step through
the individual curves sequentially. You can also show the grid-plot dialog via
popup menus. See section (3.10).

3.6 Process

3.6.1 Process|Solve

Brings numerical outputs up to date with numerical inputs that may have been
changed.

3.6.2 Process|Map

Carries out the mapping sequence specified by the mapped variables.

18 CHAPTER 3. MENU COMMANDS

3.6.3 Process|Optimize

Carries out the optimization problem specified by the optimized variables, con-
straints and objective function, if any.

3.6.4 Process|Parse Solution

Parses or compiles the evaluation expressions in user-defined variables, along
with other model setup tasks, without actually solving the model.

3.6.5 Process|Parse Mapping

Parses or compiles the evaluation expressions for mapped variables, without
actually mapping the model.

3.6.6 Process|Parse Optimization

Parses or compiles the evaluation expressions in constraints and the objective
function, along with other optimization setup tasks, without actually optimizing
the model.

3.6.7 Process|Reinitialize

Resets all implicitly solved model variables to their initial values. Helpful when
a change to a numerical input or model structure causes the model solver to fail
to converge.

3.7 Tools

3.7.1 Tools|Explore Optimization

Lists all optimized variables in a model, grouped by model component, with
subject-to constraints listed in a parallel column. Useful for understanding the
optimization structure of complicated models and for finding over-constrained
or infeasible optimization specifications.

3.7.2 Tools|Explore Custom Variables

Displays an interactive form containing a tree-structured view of all user-defined
inputs, outputs and recast inputs in the whole model. You may click on a
variable identifier in the tree view to display its value and defining information
or use the Find button to locate a variable anywhere in the model by matching
its identifier against the one you type in the identifier box. Other buttons allow
you to trace which variables reference or depend on other user-defined variables
and make editing changes. A submenu that pops up after clicking the right
mouse button supports copy and paste operations. See section 4.10.2

3.8. OPTIONS 19

3.8 Options

3.8.1 Options|Sage

Activates a self-explanatory dialog for setting options pertaining to all Sage
applications.

3.8.2 Options|Model Class

Activates a self-explanatory dialog for setting options pertaining to a particular
model class.

3.9 Help

3.9.1 Help|PDF manual

Shows an electronic version of the Sage User’s Guide opened under Adobe
Reader. It is the same as the printed User’s Guide except with hyperlinked
contents, index and internal cross references. All of the navigation features of
a standard Windows help file are available along with better typography and
formatting.

3.9.2 Help|Sample Models

Launches Windows File Explorer, open to the folder where sample models and
documentation are stored for the Sage application currently running.

3.9.3 Help|About

Shows version and copyright information.

3.10 Popup Menus

The Specify menu items are also available under popup menus on clicking the
right mouse button when positioned on the selected model component in the
display window or edit window. The popup menu also includes an item for
toggling the view of the selected model component from the edit window to the
display window and vice-versa.

There is also a popup menu associated with connection arrows. It allows you
to plot the solution grid for the connection, provided the connection is active
(solid arrow) and the quantity flowing through the connection is solved on a
grid, usually labeled with a t or x suffix, as in FGt or QGxt. To show this
popup menu, left-click to select a connector arrow then right-click the selected
arrow to show the menu. See the Specify|Plot Solution Grid menu item for more
information about solution grid plots.

20 CHAPTER 3. MENU COMMANDS

Chapter 4

Working with Models

4.1 Data Files

Use the File|New menu command to create a new model or the File|Open com-
mand to open an existing model file. Creating a new model opens an empty
edit form and fills the model-component palette within the main Sage form with
potential model components. See chapter 7 for what to do after that. Open-
ing an existing model file restores a model to its numerical state and display
appearance at the time the model was last saved.

You are responsible for saving a model when you have made changes to it.
Use the File|Save command or the File|Save As command if you want to save
it to a new file and simultaneously change the file name for subsequent Saves.
It is always a good idea to save your model before making a lot of changes to
it, in case you want to revert back to the old file. Otherwise, undoing model
changes is a manual process. The one undo feature in Sage is to re-paste a
deleted (cut) model component back into the edit form, but it works only for
the most recently deleted component.

When you save a model file, there are actually two files saved, a model-
specific file and a Windows initialization file containing the state of the model
Windows interface. The files have the same name but different file extensions.
You will normally not be aware of the Windows initialization file and it will be
regenerated if lost.

4.2 Viewing Model Structure

The edit form (to the left within the main application form) shows the child
model components within a given parent model component, along with the
connections among them. If the parent component is the root-level component,
you are looking at the whole model at the highest level of abstraction. The
name of the current parent component is on the selected tab at the bottom of
the form. You can move up and down in the parent-child hierarchy in one of

21

22 CHAPTER 4. WORKING WITH MODELS

two ways: Double-clicking on a component icon in the window will activate that
child as the new parent component. Or clicking on a tab will change that model
component to the parent component. The tabs are designed to hold only one
pathway (from root to terminal component) of the model tree at a time.

Keep in mind that many menu commands are keyed to the model component
that is currently active. Within the edit form, the active model component
is the one whose icon caption bar is highlighted. Or, if no component icons
are highlighted, it is the parent model component itself. Highlighting a model
component is just a matter of clicking on its icon. Click in the form client area
between child-component icons to activate the parent component. Or click on
the parent’s tab.

There are two purposes for the edit form. The first is passive display of the
existing model structure to help you understand what the model is all about.
You may print the edit form as it appears on your display monitor, with the
Edit|Print command. The second purpose is to support interactive modification
of the model structure. This is the subject of chapter 7.

4.3 Viewing Model Data

Proceeding from the general to the specific, you may view your model’s data
with listings, display-form pages or solution-grid files.

4.3.1 Listings

The format in which model files are stored on disk is a special binary file stream
understood by Sage alone. It is not appropriate for human readable hard copy.
For readable copy, you will need an output listing which you may either preview,
print or save-to-file using menu sub-commands Listing Preview, Print Listing or
Save Listing under the File|Listing... main menu item. An output listing contains
current numerical inputs and outputs for the entire model hierarchy. There is a
table-of-contents header at the beginning of an output listing which numbers its
various sections (one for each model component) using a notation that conveys
the model-tree hierarchy. Using this identification number it is easy to scan
through the listing to the location of the model-component you are interested
in.

You can select among various categories of display using the File|Listing Pre-
view command, then checking the appropriate boxes at the top of the preview
dialog. For example, to display a model’s inputs only, check the inputs box. To
display a model’s optimization structure only, check the optimized, constraints
and objective function boxes. And so forth.

The File|Print Listing command produces a non-formatted printout without
margins or intelligent page breaks. For a formatted printout you should instead
save the listing to a file using the File|Save Listing command. The result is an
ASCII text file which you may then format and print as you see fit with your
favorite word processor or text printer.

4.3. VIEWING MODEL DATA 23

4.3.2 Display Form

The display form contains the same textual information as a listing except you
include in the form only those model components you are interested in. The
display for a single model component is known as a page, and each page has
a corresponding tab at the bottom of the form. You display different pages
by clicking on the corresponding tab. To add a new page to the form use
the Display|Add Page command or highlight a component in the edit form and
select Show in Display Window in the right-click popup menu. To remove a
page, select that page then use the Display|Remove Page command. To print a
page use the Display|Print command. A display-form page contains the complete
textual output for a model component. There is no way to restrict the display
by categories.

Although the pages of the display form are read-only (do not support direct
editing operations) the Scan and Specify menu items are keyed to the model
component that is currently active — the one whose display page is selected.

4.3.3 Solution Grid Variables

The standard numerical outputs that appear in the listing or display form are
usually single numerical values representing discrete quantities — integrals or
averages, that sort of thing. Often, a model component has an underlying
computational solution grid behind the outputs. You can inspect this grid via
the File|Save Solution Grid command which produces an ASCII format disk file
containing all the numerical solution grids for the model component currently
active in the edit form or display form and all its child model components.

You should keep in mind that not all model components contain solution
grids. Generally, the highest level components (those visible in the root page
of the edit form) do not. Solution grids are usually found only in lower-level
components of a model class. To see which components contain grids you will
have to read the documentation for the model class you are working with.

An output file may contain several grids each containing several individual
state variables. The easiest way to explain this is with an actual example, such
as the following which show the solution grid for a time-ring reciprocating mass:

resonant system | reciprocator

position displacement grid

X: displacement (m)

-7.569E-04 -3.784E-04 3.784E-04 7.569E-04 3.784E-04 -3.784E-04

Xd: velocity (m/s)

-1.720E-20 2.471E-01 2.471E-01 1.668E-20 -2.471E-01 -2.471E-01

Xdd: acceleration (m/s2)

1.076E+02 5.378E+01 -5.378E+01 -1.076E+02 -5.378E+01 5.378E+01

The solution values for the three state variables of the position displacement grid
are listed. The individual variable values appear as tab-delimited fields within

24 CHAPTER 4. WORKING WITH MODELS

a line or record. For the present case — a pure time grid — the entire grid of
values fits in a single record, starting at time zero and equal-spaced throughout
the periodic interval. For a pure space grid it would be much the same, starting
at the negative domain endpoint and ending at the positive domain endpoint,
also equal-spaced. For a space-time grid, there would be a sequence of records,
each record corresponding to the time nodes at a fixed spatial position. The
first record would consist of the time nodes at the negative domain endpoint,
and so forth. In this example there is only one grid, the position displacement
grid.

You can inspect a solution grid file with any text editor or word processor.
Or you can open it with a spreadsheet program, such as Excel, where the tab-
delimited fields should arrange themselves into neat rows and columns. Besides
looking at your data, you can then plot it or operate upon it in other ways as
you see fit.

4.4 Numerical Input

Once you have created a model structure or read an existing model file, you will
generally want to change one or more numerical inputs.

To change a numerical input, first select the model component in which
it resides by mouse-clicking the appropriate tab in the display or edit form, or
clicking the appropriate icon in the edit form. Then select Specify|Input Variables
from the main menu or right-click context menu. You will be presented with a
list of input variables pertaining to that particular model component only. To
change a variable value click on that variable and an appropriate input dialog
will appear, geared to the format of the individual variable. It is here that you
actually enter the value. Sorry, but you cannot directly edit a variable value
within the display form.

Sometimes you want to change or inspect numerical inputs for more than
just a single model component. This is possible with the Scan|Input Variables
menu command. Using this option you are presented with a list of all model-
component names requiring numerical input for the active model and its entire
sub-tree. Clicking on a model-component name brings up the appropriate input-
specifying dialog. Often, scanning input variables this way will be much more
convenient than individually selecting model components one at a time. When
you want to inspect input variables for the entire model hierarchy, just scan the
root model component.

4.5 System of Units

It is possible to change the dimensional units displayed for the variables of your
model. To do so, make the appropriate selections in the dimensions page of
the model-class options dialog available under the Options|Model Class menu
item. For example, if you change the length dimension from m (meters) to

4.6. SOLVING 25

in (inches), all variables whose dimensions were previously listed as (m) are
immediately converted to (in). Also affected are any variables with derived
dimensions involving length. For example, variables in (m/s) are converted to
(in/s).

Changing dimensional units does not affect your model’s solution, nor does
affect the internally-stored values for any built-in variables, which are always
in SI units (International System) or dimensionless. It merely changes your
model’s appearance by means of a value-conversion layer of software built into
the visual interface. So it is safe to change dimensions back and forth as often
as required. No information will be lost.

But, changing dimensions is not entirely without subtle consequences. This
is because the value-conversion layer of software also affects the internal val-
ues of any user-defined variable (section 4.8), constraint or objective function
(chapter 6) whose value derives from a string expression referencing a dimen-
sional variable. For example, if you have defined a constraint like X ≥ 0.04,
its value is based on the current dimensional value of X. Anything else would
be confusing. But as a result, the constraint may be satisfied if X has units
of (m) and violated if it has units of (in)! Similarly, in a mapping specifica-
tion (chapter 5), the range you specify applies to the dimensional value of the
mapped variable, as you would expect. So the consequences of mapping X over
a range [0.010, 0.020], depend on the current dimensions of X. Sage gives you
the responsibility for making sure that your mapping and optimization specifi-
cations survive a dimensional change. To be safe, it is a good idea to settle on
a system of units at the beginning of a project and stick with it, only changing
it from time to time to compare with engineering drawings in other units or
communicate with actual engineers who prefer to speak in other units.

The state of your model’s dimensional units is saved in the project-specific
initialization file logically paired with your model’s input file (same name). This
initialization file is updated whenever you save your model and read whenever
you load your model. So exiting Sage without saving your model, or just re-
loading it, will abandon any temporary dimensional changes you might have
made.

4.6 Solving

After you have modified the model structure or changed numerical inputs, you
will notice that the warning not solved appears after the Outputs heading in the
display form. This means you can no longer trust the values displayed. They
are displayed anyway as an aid to diagnostics during the solution process.

To re-validate numerical outputs you must solve the model with the Process|
Solve menu command. This command initiates an iterative process that may
take a significant amount of time to finish. In some cases the solver may not
even converge.

To keep you informed during the solving process, Sage puts up a status
dialog which displays useful information and allows you to stop or pause the

26 CHAPTER 4. WORKING WITH MODELS

process if things are not going well. The goal is for the solver to drive the
model’s RMS error function (measure of how close the model’s implicit function
values are to zero) to some target value. When the RMS error fails to go down
after a reasonable number of iterations (30–40 or so), you have trouble. You
can inspect the individual components of the RMS error function and possibly
diagnose problems using the techniques described in section 4.7.

Sometimes a model will not converge for a good physical reason, such as
a missing boundary condition or bad initial conditions. The first and easiest
thing to try is to stop the current solving process, re-initialize all variables
with the Process|Reinitialize command then try again. This often works if the
problem is due to remnants of a previous solution being incompatible with a
drastic change in model structure or numerical input. Sage never throws away
solution information unless you tell it to. It assumes previous solutions are
reasonable initial conditions for subsequent solutions, which pays big dividends
when you or its optimizer make only small changes to numerical inputs. If
re-initializing doesn’t work, it may be that the initial values are too far from
the converged solution. Most model classes give you some control over this by
including a number of constant inputs which are used to set initial conditions.
These range from normalization values for key physical dimensions (usually in
the root model component) to initial temperature distributions and the like.
The idea is to set any such constants to reasonable values for your particular
model-class instance. Documentation for individual model classes should offer
hints about setting these constants.

If converge continues to fail, it may be that you have a physically absurd
model. Helping you to understand why, is the reason Sage displays numerical
outputs, even if not solved. In fact, after each solver iteration, sage updates its
numerical outputs. Variables tending to zero or infinity will often give you vital
clues about why your model is not converging. A good physical understanding
of your model is important here. If all else fails, you may have to throw away
your recent changes and resort to the last working version of your model file.
You did save one, right?

4.7 Solver Diagnostics

In the event Sage’s solver fails to converge and the methods discussed in section
4.6 don’t help, you may want to take a look behind the scenes by checking the

4.7. SOLVER DIAGNOSTICS 27

solver diagnostic dialog box under the Options|Sage menu command.

The result is a diagnostic dialog displayed after each Jacobian-matrix factoriza-
tion, usually every solution iteration for a non-converging model. This dialog
allows you to graphically inspect implicit variables and system function val-
ues for model components that may be causing convergence problems. In your
model, each implicitly solved variable V is associated with a function compo-
nent F , to be driven to zero during the solution process.1 By selecting the
appropriate radio button in the dialog you can display function values that fail
to get small, extreme variable steps, out-of-range variable steps or fluctuating-
sign variable values. Clicking on a plot point displays information about the
corresponding V and F values, in the memo box at the end of the dialog. V
values are SI dimensioned values. F values are dimensionless and normalized
(scaled to a range of values on the order of one).

In any of the plots, if there are only a few consistently large values they may
point you to an area of your model that is causing convergence problems. By
focusing your attention on that part of the model you may be able to under-
stand what the problem is and how to correct it. If you isolate the problem
to a computational grid you may want to explore that grid in detail using the

1For example, the implicit variable Xddot (acceleration) within the reciprocating mass
solution grid, at some particular time, is associated with a function component representing
the residual force of Newton’s second law of motion “mass × acceleration − summation of
forces”, at the same time.

28 CHAPTER 4. WORKING WITH MODELS

File|Save Solution Grid command. Diagnostic plot options are:

|F | values > Tol With this button clicked you see a plot of all system function
values whose absolute value exceeds the current Tol value in the tolerance
edit box. Keep an eye out for F values that remain large from one iteration
to the next.

|dV | values > Vnorm Shows all extreme solution variable steps requested
(but not necessarily taken) by the previous iteration of the nonlinear solver
in its attempt to simultaneously zero all the F ’s. Generally, for a well be-
haved solution the dV steps are smaller than the normalization values
Vnorm and nothing is plotted. Otherwise it may be a sign that the model
equations are ill conditioned or indeterminate. The solver imposes limita-
tions to prevent actually taking extreme steps but this plot shows the raw
step values prior to any limitations. If you see any normalized step values
>> 1 it means that these variables are only weakly determined. Some-
times this happens when starting from initial solution values or after the
solution is re-initialized and then improve when the solution evolves a bit.
If the problem persists then you might want to change the model structure
to more strongly determine the solution variables displayed in the plot.
For example, impose stronger thermal anchoring, position anchoring, etc.

Step limited dV values Shows all variables where the solver-recommended
step exceeded the allowed limit. For example, a step into negative territory
for a variable restricted to positive values, or a too-large steps for a variable
whose steps are limited to stabilize solution convergence.

Fluctuating sign V values This plot is available for the second solve itera-
tion and higher. It plots all solution variable values that have changed
sign since the previous iteration. Directional variables (e.g. mass flow
rate) sometimes get stuck in an oscillating loop where they hunt back
and forth near zero. This is because certain function components may
depend discontinuously on the direction of such variables. For example,
the gas thermal energy equation for a computational cell depends on the
temperature of the fluid flowing through the cell boundary, which changes
discontinuously when the flow direction changes. Variables in this plot
may help you identify such problems. Slightly shifting the reference phase
angle of whatever component is driving the solution (e.g. phase angle of
moving piston) can remedy problems of this type. Such phase shifting can
prevent direction reversal times from coinciding with nodes in the time
grid.

4.8 User Variables

Sometimes the numerical outputs programmed into model components may not
be sufficient for your needs. You may find you are always having to add together

4.8. USER VARIABLES 29

a number of individual outputs, from one or more model components, to get
the answer you are interested in. User-defined variables can help.

User-defined variables are special output variables that you yourself add to
model components and define by entering algebraic expressions in terms of other
variables known to that model component. They become part of the model com-
ponent and appear in the display window and output listing. They may also
appear in log files that accompany mappings or optimizations. Variables refer-
enceable in the defining expression are any of a component’s own input or output
variables, provided they have a numerical type, as well as any user-defined vari-
ables in its model sub-tree, provided their export level is high enough. Sounds
complicated but it really isn’t. You just have to be a bit organized.

For example, you may want to define a variable named Qin (net heat input)
whose value is Qh + Qparasitic, where Qh and Qparasitic are names of two
referenceable variables, in this case other user-defined variables. All you do is
activate the model component in which you want your variable to reside and
select the Specify|User Defined Variables menu item. A dialog will then open,
allowing you to create a New variable, Change an existing one, and so forth.

(note you can also specify user-defined variables for the entire model in a struc-
tured way by selecting the Tools|Explore Custom Variables menu item)

With this dialog you can also set the selected user-variable’s display order (Move
Up, Move Dn buttons) and Increase or Decrease its export level (visibility for
purposes of referencing by other user-defined algebraic expressions, see below).
When you click on the New or Change buttons A sub-dialog prompts you for

30 CHAPTER 4. WORKING WITH MODELS

the vital information that defines the variable:

Within the sub-dialog you have the opportunity to enter your variable’s identi-
fier, a defining comment and an algebraic expression. The identifier is the name
used to reference the variable in other algebraic expressions of your model, simi-
lar to the variable identifier in a programming language. The defining comment
is only for human use, to help you, and others who might read it, keep track
of the variables purpose. More information about referenceable variables and
acceptable syntax for the algebraic expression can be found in chapters 8 and
9. You may also designate your variable to appear in mapping or optimization
log files or CAD files by checking the write to log file box or CAD variable box.

The export level, defined in the second dialog above, is the highest-level
parent model component in which the variable will be referenceable. It is not
automatically as high as possible to avoid potential name conflicts with variables
in other branches of the model tree. Variables are automatically referenceable
in the model component in which they are defined and any lower-level child
model.

Writing algebraic expressions for user variables is a bit like programming in
a typical computer language. It is possible to make grammatical syntax errors
that render your expression unreadable by Sage. To see if you have done this,
you may use the Process|Parse Solution menu command. Or you may just try to
solve the model without taking this step. If Sage cannot parse your algebraic
expression it will put up a dialog box showing your expression with the cursor
at the offending location, giving you an opportunity to change it. You will find
a terse comment describing the problem within the status bar at the bottom of
the dialog box.

4.9. RECAST VARIABLES 31

4.9 Recast Variables

Sage model components are designed for general use within a number of pos-
sible different hardware configurations. For example, a “piston-and-cylinder”
component may represent a piston within a stand-alone pressure wall or a dis-
placer within a cylinder that is the inner wall of an annular regenerator. In the
later case the length of the displacer is related to the length of the regenerator
but the two lengths are specified independently in the Sage model. You can
eliminate the need for entering both inputs independently by recasting the dis-
placer length as a dependent variable, defined in terms of regenerator length.
In general you can recast any real-valued independent input variable (or vari-
able with real parts) as a dependent variable so that Sage calculates its value
during the solution process in terms of a user-defined expression involving other
model variables. Recast variables appear in the Sage listing or display windows
under the heading Recasts and their calculated values appear under the Outputs
heading.

To recast an independent input variable, activate the model component in
which it reside and select the Specify|Recast Variables menu command. A dialog
opens, showing variables eligible for recasting and those already recast.

(note you can also specify recast variables for the entire model in a structured
way by selecting the Tools|Explore Custom Variables menu item)

The pertinent information for the selected recast variable is displayed at the
bottom of the dialog. Using the Change button you can revise the defining
algebraic expression (see below). Using the Move Up or Move Dn buttons you
can change the display order in the list box and also in the Sage listing or dis-

32 CHAPTER 4. WORKING WITH MODELS

play window. When you change the defining algebraic expression Sage has to
parse the expression before it can calculate its numerical value. Pressing the
Compile button initiates the parsing process. If successful the calculated value
is displayed in the value box. If not, a dialog pops up indicating the reason
for the problem and allowing you an opportunity to fix it. The ViewInterpola-
tion button allows you to see intermediate values for more complicated recast
variables like cubic-splines or Fourier series (see below).

The > and < buttons move a selected variable from the “independent vari-
ables” to the “dependent recasts” list or the other way. Moving a variable to
the “dependent recasts” list immediately opens its definition-dialog, similar to
the dialog used to specify user-defined variables:

Moving a variable to the “independent variables” list restores it to its original
state, except that its value becomes the most recent value it had as a recast
variable.

In the above example the displacer Length is recast to equal Ldis, which is a
user-defined input defined at the root level (see section 4.10).

Recasting is not the only way to implement geometric model constraints. It
is also possible to do so during the optimization process. Using recast variables
however, eliminates explicit constraints and associated variables from an opti-
mization structure, making it easier to understand and run faster. Moreover,
recast variables are updated as part of the solution process and do not require re-
optimizing the model each time you change an associated input variable. There
are also advantages for the mapping process because a single mapped variable
can affect other inputs that you have recast as dependents, allowing you to
map along a curve in model space rather than just along the input coordinate

4.9. RECAST VARIABLES 33

directions.

4.9.1 What Variables are Recastable?

In addition to recasting single-valued real input variables, you can also recast
the real-valued parts of more complicated variable types like Fourier series and
cubic-splines data pairs. Provided they are what Sage recognizes as true inde-
pendent variables rather than constants. Constants are not recastable because
they used for normalizing variables during solving and optimizing and must not
change during either process. Constants are usually single-valued real inputs
(e.g. Tnorm) although some cubic-spline variables (e.g. Tinit of heat exchangers)
are also implemented as constants.

The dialog below illustrates recasting the wall thickness distribution Wcan
of a tubular-cone canister to a cubic-spline with discrete values expressed in
terms of user-defined inputs Wcold and Whot.

You enter expressions for multi-valued input variables like WCan in a dialog

34 CHAPTER 4. WORKING WITH MODELS

like this:

Expressions for the independent and dependent parts of discrete interpola-
tion points are entered in the cells of the string grid control of the dialog. Just
mouse-click on the desired cell to make changes, taking care, in this case, that
the independent values are entered in increasing order from 0 to 1.

The Delete Row, Insert Row, Move Up and Move Dn buttons act on both
independent and dependent cells simultaneously for the selected row of the string
grid. The selected row is the one you have most recently edited or clicked on
with the mouse.

Clicking the ViewInterpolation button produces a dialog like this:

4.10. USER INPUTS 35

4.9.2 Note on Dimensional Units

A recast variable retains its original dimensional units and Sage assumes the
defining expression is also in those same units. So, for example, if you change
the displayed units from meters (m) to inches (in) in the Options|Model Class
dialog then the defining expression for any recast variable with the dimension of
“length” must scale by a factor of 39.37. If the defining expression is a numeri-
cal constant, then you must change that constant manually. If, as in the above
example, the defining expression references another variable, then the scaling
is automatic, provided the referenced variable has the same dimensional units
as the recast variable. But if the referenced variable has different dimensional
units then the defining expression will scale incorrectly. The best practice then
for implementing defining expressions is to reference a variable with the correct
dimensional units in the expression. But doing so is up to you. There is no
mechanism in place to enforce dimensional consistency in the defining expres-
sion.

4.10 User Inputs

So that you may take full advantage of the recast-variables feature (section 4.9)
Sage allows you to add custom user-defined input variables to model compo-
nents. A user-defined input is intended for referencing in the defining expressions
of a number of distinct recast input variables at lower levels of the model tree.
That way a single user-defined input value can directly assign the values of what
were previously several independent inputs. A user-defined input becomes part
of the model component it is defined in and behaves just any other input for
purposes of model solving, mapping or optimizing. Currently Sage allows only
single-valued real user-defined inputs.

To create a user-defined input variable, activate the model component in
which it is to reside and select the Specify|User Inputs menu command. A dialog
opens, showing any user-defined inputs already present with buttons for creating
new ones or modifying existing ones.

(note you can also specify user-defined inputs for the entire model in a struc-

36 CHAPTER 4. WORKING WITH MODELS

tured way by selecting the Tools|Explore Custom Variables menu item)

The New button creates a new input. The Change button allows you to revise
the defining properties of an existing input (the one selected) or the Delete
button allows you to remove it from the model component. The Move Up or
Move Dn buttons change the display order in the list box and also in the Sage
listing or display window. Pressing the Change or New buttons opens the dialog
for setting the defining fields:

The Identifier field is the name that will appear in the listing and display
window and by which the input may be referenced in algebraic expressions
within your model. The Definition field is a short description of what the input
means. It also appears in the listing and display window but only for your
convenience. The Value field is the numerical value that propagates through
the model solution according to the other variables that reference the input.
This is the value you normally see in the listing and display windows for an
input variable. You can also assign it with the Specify|Input Values dialog just
as for a built-in input variable. The normalization field supplies the scale of the
input. It is used for setting step size during numerical differencing operations

4.10. USER INPUTS 37

in the solution or optimization processes. The Dimensional Units are selected
from a list and tie the value and normalization fields to the current dimensions
selected in the Options|Model Class dialog. For example, if you change the
displayed units from meters (m) to inches (in), the Value and Normalization
fields automatically scale by a factor of 39.37. When you reference a user-
defined input in the defining expression of a recast input variable (or any other
algebraic expression) the referenced value also automatically scales according to
the currently selected dimensional units.

4.10.1 Identifier Visibility

As with a built-in input, the identifier of a user-defined input is visible from any
lower-level child component in the model tree and may be referenced there in
any algebraic expression. There is no provision for increasing the visibility to
a higher level (parent model component) as there is for user-defined dependent
variables. If you need to reference a user-defined input at a higher level then
just define it at that level or higher in the first place.

4.10.2 Exploring Custom Variables

The Tools|Explore Custom Variables menu command opens up an interactive
visual form where you can work with all the user-customized variables (user
variables, recast variables and user inputs) in your entire model simultaneously.
The key to doing this is a tree-structured listing of model components and

38 CHAPTER 4. WORKING WITH MODELS

user-defined variables located at the left of the form, as illustrated here:

The user-customized variables, or custom variables for short, are listed as
nodes under the model components in which they are defined. The displayed
information, buttons and sub-menu items of the interactive form are keyed to
the selected custom variable or model component in the tree view. You select a
custom variable by clicking on its identifier in the tree view or by using the Find
button to locate a variable anywhere in the model by matching its identifier
against the one you type in the identifier box.

The Trace Dependencies button allows you to trace all the custom variables
that depend on or are referenced by the selected custom variable. In the example
above, the user-variable Wnet is selected. It references two other user-defined
variables Wpis and Wdis, which are indicated by left-facing arrows in the display.
It is itself referenced by another user-defined variable Eff, which is indicated by
a right-facing arrow.

Several editing options are available in the panel to the right in the form.
Many of these operations are also available under the Specify|User Inputs, User

4.10. USER INPUTS 39

Variables, or Recast Variables menu items but they are repeated here for conve-
nience. You can change a variables identifier, definition or expression. You can
change the order in which it is listed and for user variables change its export
level. The export level is the level above the parent model component in which
the variable identifier may be referenced by an expression in another custom
variable, constraint or whatever.

After you change a custom variable all custom variables that may reference it
are disabled for evaluation purposes and the value box displays “not compiled”.
The Compile button allows you re-parse all the custom variables, after which
the value box once again displays numerical values.

There is also a submenu available that supports new, delete, cut, copy and
paste operations. The submenu pops up by positioning the mouse cursor within
the tree view then clicking the right button. When a model component is
selected the New submenu item, allows you to insert a new user input, variable
or recast variable. When a user input or variable is selected the Cut or Copy
operations are available. Recast variables are not copyable because they are
tied to specific built-in variables of the model. Copy and paste operations use
the Windows clipboard by encoding a user input or variable defining data as a
tab-delimited text string. It is possible to copy user inputs or variables from
one model to another model running under a second Sage application. In order
to paste a user input or variable that has been cut or copied it is necessary to
first select the model component in the tree view into which the variable will be
pasted.

40 CHAPTER 4. WORKING WITH MODELS

Chapter 5

Mapping

There are times when you may want to investigate a sequence of solutions over
a discrete range of one or more input variables. This is the process of mapping.
Mapping is something you might want to do to achieve a better understanding of
your model’s sensitivity to various inputs. But it is not the same as optimization,
the topic of the next chapter.

Anyone with any programming experience will understand the sequence of
solutions generated in a mapping as the result of a nested loop structure. Except
no programming is required (on your part) to do a mapping in Sage. All you
do is select one or more input variables to be mapped using the Specify|Mapped
Variables command then run the mapping with the Process|Map command. The
rest is automatic.

Prior to specifying a mapped variable you must first activate the model
component containing the variable by clicking its tab in the display or edit
form, or clicking on its edit-form icon. Mappable variables are selected from
a list of any drivable variable within the model component as described in
chapter 10 — usually a real-valued independent variable, rarely the real part
of a composite variable. For each mapped variable selected, you also specify
the first and last values the variable will take, the number of iterations to be
made within the mapping interval and whether the variable should be mapped
in equal steps or equal ratios. The total number of solutions performed in the
whole mapping process is the product of the iteration counts for the individual
mapped variables. Evidently, for complicated models that take a long time to
solve, you will want to think carefully about how many variables to map and
their iteration counts.

When mapping initiates you are prompted for the name of a disk file in
which the mapping results will be stored in ASCII format. This file will contain
a sequence of lines or records containing tab-delimited values for the mapped
variables as well as any user-defined variables tagged for appearance in log files.
You select such user-defined variables by checking the ”write to log file” box in
the user-variable definition dialog available under the Specify|User Variables or
Tools|Explore Custom Variables menu items.

41

42 CHAPTER 5. MAPPING

During the mapping process, solutions are generated automatically until the
mapping is finished. A mapping status dialog shows you the current mapping
iteration and solution progress within that iteration. Using the buttons of the
status dialog you can abort the mapping at any time, after which the mapping
log file is closed with the results so far. You can also view the mapping progress
in the display form, as usual, while the mapping is in progress.

Chapter 6

Optimizing

The standard mathematical definition of a general nonlinear programming prob-
lem looks like this:

minimize a real-valued objective function F (x), where x is a vector
of n real variables, subject to the equality or inequality constraints

ci(x) = 0, i ∈ E (6.1)

ci(x) ≥ 0, i ∈ N (6.2)

where E and N are disjoint index sets.

which may leave you cold. In Sage you deal with optimization as a natural
extension of the engineering model you already understand, in terms of things
you quite naturally want to do. The objective function and any constraints fall
out naturally. And after you have specified a few optimization problems you
might want to note that they can, after all, be cast into the above rigorous
mathematical form.

6.1 Specifying Optimization Variables

Although optimization variables pertain to the model as a whole, you specify
them one group at a time within each model component. To flag a variable
as an optimization variable, first activate the model component containing it
(click its tab in the display or edit form, or click on its edit-form icon), then
select Specify|Optimized Variables from the menu. As with mappable variables,
optimizable variables are selected from a list of any drivable variable within the
model component as described in chapter 10 — usually a real-valued indepen-
dent variable, rarely the real part of a composite variable.

43

44 CHAPTER 6. OPTIMIZING

6.2 Specifying Constraints

Constraints, too, pertain to the model as a whole but are specified individually
within a particular model component. To specify a constraint, first activate the
model component that will contain it (click its tab in the display or edit form,
or click on its edit-form icon), then select Specify|Constraints from the menu.
Constraints are specified in the form E1 ≤ E2, E1 = E2, E1 ≥ E2, where E1
and E2 are two algebraic expressions you enter, similar to those entered for
user-defined variables. More information about entering algebraic expression
can be found in chapter 9.

Satisfying your constraints is the job of Sage’s optimization driver. It does
this by tweaking the optimization variables to force the left-hand-side expres-
sion minus the right-hand-side expression (E1 − E2) to be zero, in the case of
an equality constraint, or merely non-negative or non-positive in the case of
an inequality constraint. Equality constraints are always said to be active —
meaning in force or to be reckoned with. Inequality constraints are active only
when they start out violated or the optimization driver tends to violate the
constraint during the course of the optimization. A useful rule of thumb is that
each active constraint reduces by one the degrees of freedom available in the
search domain to minimize or maximize the objective function.

Constraints are very useful things. You can invoke simple inequality con-
straints to keep an optimized variable in bounds — such as “X ≤ C” or “X
≥ C”. Or, you can invoke more complicated constraints — such as PowerOut
= 100, where PowerOut is a user-defined variable you have defined in terms of
built-in outputs. You can even invoke constraints without an objective function
present. However, when you do this it is necessary to specify the same number
of optimization variables as active constraints. Go ahead and be liberal impos-
ing constraints. Create as many as you feel you need. If physically sensible and
reasonably linear, they are no great burden on Sage’s optimizer.

6.3 Specifying the Objective Function

Like all the other elements of an optimization problem, the objective function
pertains to the model as a whole but is specified within a particular model
component. There can be only one objective function, which means that if you
create a new one, the old one disappears. To specify the objective function, first
activate the model component in which it is to appear (click its tab in the display
or edit form, or click on its edit-form icon), then select Specify|Objective Function
from the menu. You will be presented with dialog containing information about
the existing objective function, if any, and the means to change it. The objective
function is specified in the form “minimize E” or “maximize E”, where E is
an algebraic expression similar to those entered for user-defined variables or
constraints. More information about entering algebraic expression can be found
in chapter 9.

In the objective-function dialog box, the existing objective function is dis-

6.4. RUNNING AN OPTIMIZATION 45

played even if it is in another model component. Where it presently resides
appears in the dialog box labeled Currently In Model Component. Where a
newly created or changed objective function will reside appears in the dialog
box labeled New Model Component. The component in which the objective
function belongs is the one where it is most natural to reference the variables
in its defining expression, usually, but not always, the root model component.

As with satisfying constraints, Sage maximizes or minimizes your objec-
tive function by tweaking optimization variables according to its built-in logic.
The objective function often represents some model output such as power, heat
input, efficiency — typically, something that arises as the end result of a con-
siderable amount of computation. As such, objective functions can be highly
non quadratic (the ideal) and require many iterations for Sage to minimize or
maximize. On the other hand, they may be relatively simple, as in the sample
problems concocted at the beginning of this chapter.

6.4 Running An Optimization

Once you have specified the optimization problem, you initiate the optimization
process with the Process|Optimize menu command. When optimization begins
you are prompted for the name of a disk file in which the optimization results will
be stored in ASCII format. This file will contain a sequence of lines or records
containing tab-delimited values for the optimized variables, constraints and ob-
jective function, as well as any user-defined variables tagged for appearance in
log files. You select such user-defined variables by checking the ”write to log
file” box in the user-variable definition dialog available under the Specify|User
Variables command.

A status dialog box then appears, giving you a blow-by-blow account of the
process and an opportunity to stop or pause if the need should arise. You can
use the pause option to inspect the current solution state or save the model
between iterations. The status dialog itself contains a good deal of information
designed to keep you somewhat informed and entertained while you are sipping
your coffee, or doing whatever you do to kill time. The goal of the optimizer
is to drive the so-called pseudo-Lagrangian step change to a small but negative
value.

The pseudo-Lagrangian step-change is a measure of the relative change over
the current step of the objective function plus a weighted sum of violated con-
straints. The value should start out large and negative and grow ever smaller
(but still always negative) as the optimization converge to the minimizer. For
our present purposes, it is sufficient to think of the pseudo-Lagrangian as an
approximation to the classical Lagrangian function of constrained optimization
theory, which has an extreme point at the minimizer or maximizer.

One thing to keep in mind is that values printed in the status dialog pertain
to the optimization problem at a somewhat higher level of abstraction than
your original specification. The objective function and constraint violations
displayed are normalized values. And if you have chosen to maximize rather

46 CHAPTER 6. OPTIMIZING

than minimize your objective function, its sign is switched. This is because the
optimizer always minimizes objective functions. Minimizing −f is equivalent to
maximizing f .

After some up-front work to estimate evaluation precision in the objective
function and constraints and to initialize the Hessian (second-derivative matrix),
an optimization is carried out as a sequence of iterations. Each iteration requires
a small step of each optimization variable in order to perform numerical partial
derivatives of the objective function and its constraints, followed by a line search
(all variables stepped simultaneously) along a direction defined by the solution to
a quadratic-programming subproblem the optimizer maintains as it goes along.
You can follow this in the status dialog box labeled stepping. Each step requires
another model solution.

If all goes well, Sage will converge to a unique solution within a reasonable
period of time. Satisfying any violated constraints usually requires only a few
iterations, say less than ten. After that, Sage seems to concentrate more on
minimizing or maximizing the objective function, which may take a good deal
longer, say up to forty iterations — maybe more in some cases. After conver-
gence you should inspect the state of your model then save it using the File|Save
command if all is well.

Sometimes, due to noise in the model, the optimizer will never reach its
target pseudo-Lagrangian step change. It will achieve a small value in the range
of, say, (−10−5) to (−10−8 and never get lower. This is generally good enough
and you should feel free to stop the optimizer whenever you think it is done.
After all, you are a good deal more intelligent than Sage’s optimizer and should
be able to sense when your model is as optimized as it is ever likely to get. The
optimizers main advantage over you is superior diligence.

6.5 Diagnostics

The most obvious symptom of a failing optimization is when the magnitude of
the pseudo-Lagrangian step change fails to decrease, or even increases during
the optimization process. There are other signs to look for that may help you
pinpoint the problem.

6.5.1 Variable Step Limits

Keep an eye on the status-dialog box labeled step limit for. Ideally it should
displays none, which is a sign that all is going smoothly and the optimizer’s
quadratic approximation to your optimization problem is reasonably valid. If
it displays the name of one of your optimization variables instead, then the
optimizer is having trouble with that variable. It has tried to step it to a
forbidden value. If the problem does not clear up after a few iterations, it may
be a good idea to stop and restart the optimization after a careful review of the
current state of the optimization variables.

6.5. DIAGNOSTICS 47

6.5.2 Line-Search Step Reductions

Another think to look for is two successive model solutions, instead of one, dur-
ing the line search. You may have to be quick to notice this, depending on
the time the solver spends solving your model. The first step of the line search
is with the increment returned by the quadratic programming subproblem. If
that step fails to produce the expected decrease in the pseudo-Lagrangian func-
tion, then a second, reduced, step is taken. When a failed search step happens
near the beginning of an optimization, it usually means that either the Hes-
sian (second-derivative) matrix, which is internally maintained and updated by
Sage’s optimizer, has not yet had time to fully evolve, or the pseudo-Lagrangian
function is nowhere near quadratic. Usually the problem is self-correcting after
a few iterations as the quadratic approximation begins to better fit the non-
linear pseudo-Lagrangian. If the problem does not go away it may indicate an
ill-conditioned optimization as described below. Sometimes it helps to restart
the optimization.

6.5.3 Ill-Conditioned Problems

When Sage absolutely fails to converge, it is probably suffering from an ill-
conditioned optimization problem. You will want to be on guard for some of
the following cases.

The most obvious example of ill-conditioning is a problem without a min-
imum or maximum. An example might be maximizing heat lift in a stirling
cooler but forgetting to constrain input power. The size and power of the ma-
chine may go up forever. It is usually not difficult to avoid this problem, but
sometimes the interaction of objective function and constraints is subtle. The
symptom of a problem without a minimum or maximum is optimization vari-
ables drifting off to infinity or zero while the objective function keeps decreasing
steadily.

A similar problem, but not as easy to spot, is the problem of weakly-
determined optimization variables — subsets of variables with more degrees
of freedom than required to solve the problem. Say, for example, you are op-
timizing a rectangular-channel heat exchanger with three pertinent physical
variables: channel number, width and gap. And assume your objective function
and constraints depend only on the two derived variables: hydraulic diameter
and wetted perimeter. Then there would be no way you could optimize all three
physical variables simultaneously. Nor could Sage. The best you could hope to
do would be to optimize two physical variables, fixing the third. If Sage were
to attempt to solve for all three, it would probably do its best, but wind up
drifting around inconclusively. Whenever you select an optimization variable,
take time to think of how the objective function and constraints depend upon
it. There is no point adding a variable if it has no bearing on either. And if
a variable is present solely to satisfy a constraint, be sure it is the only such
variable.

The most ill-conditioned problem of all is one with infeasible or overdeter-

48 CHAPTER 6. OPTIMIZING

mined constraints — constraints that cannot possibly be satisfied. A simple
example might be a problem with the two inequality constraints “pressure ≥
10.0E5” and “pressure ≤ 5.0E5”. No one would be that foolish, but when con-
straints get complicated, incompatibilities become less glaring. Sage has big
trouble when faced with such constraints. The main symptoms are very large
pseudo-Lagrangian step changes but no real improvement in constraint viola-
tions or the objective function. The objective function may increase dramat-
ically (wrong way) as it takes a back seat to Sage’s attempt to satisfy your
constraints. If you have any experience running Sage with a well-behaved prob-
lem, you will immediately recognize the symptoms of infeasible constraints.

If the optimizer feels the problem is bad enough it will terminate the op-
timization process with a message box containing some information about the
nature of the problem. Always check for the possibility that you have more
equality constraints (plus active inequality constraints) than optimization vari-
ables. Otherwise, because of small numerical differences in the linear constraint
approximations, it is rare for constraints to be truly infeasible. More likely, you
will see the weird behavior described earlier than any error messages.

Occasionally Sage may suggest that your inequality constraints are infeasible,
even though you have specified no inequality constraints. This is not an error.
It merely reflects the status of two hidden inequality constraints added to your
problem by Sage’s optimizer. When this happens, you should infer that your
equality constraints are really the infeasible ones.

If all else fails, after 100, or so, iterations — more than enough for all fore-
seeable well-conditioned optimizations — Sage’s optimizer is programmed to
give up, displaying its reason in a message box. The exact number of iterations
before this happens may be model-class specific.

6.5.4 Multiple Extreme Points

Unconstrained optimizations generally lead to a unique solution — independent
of starting conditions. There are two reasons for this: First, in most engineering
models, optimization variables tend to cluster themselves into weakly coupled
subsets (within model components or component subtrees). And second, within
each of these subsets model outputs tend to vary smoothly, or at least without
multiple peaks and valleys.

Add constraints and all bets are off. Constraints, especially nonlinear in-
equality constraints, tend to carve up the search domain into weird shaped,
possibly disjoint, regions, with multiple local extreme points potentially found
on the boundaries. Moreover, these regions are in n-dimensional space (where
n is usually greater than 3) and are extremely difficult to visualize.

The problem is that Sage will happily converge to any local minimum with
complete disregard for a better local minima lurking in some other corner of the
search domain. This is a problem with any gradient-based search algorithm.
The only way to find multiple solutions is to restart Sage from several different
points in the search domain. But the problem is, how do you pick these starting
points?

6.5. DIAGNOSTICS 49

The most satisfactory approach to finding a global optimum is by way of suc-
cessive approximation, building intuition about your problem as you go. Start
out by solving a problem with as few constraints as possible, then add con-
straints one by one and see what happens. Save the data files from intermediate
results in case you need to return to them as future starting points. As you add
constraints you will be able to develop some intuition about where that con-
straint drives the solution, why it does so, whether or not there might be other
local extrema, and where to look for them. Eventually you will accumulate a
number of good starting points from which to start Sage for the final case where
all constraints are simultaneously present.

6.5.5 Normalization Values

When specifying an optimized variable, constraint or the objective function, you
can change its normalization value using an edit box in the specification dialog.
Actually, what you can change is the scale factor which multiplies the default
normalization value. But first, what is a normalization value and why might
you need to change it?

A normalization value establishes a representative size for a dimensioned
value, providing the necessary information to convert it to a uniform sized di-
mensionless value. A dimensioned value may be a very small number or a very
large number, depending on physical units. For example, the value of a clear-
ance seal gap might be of the order of 10−5 m while the value of charge pressure
might be of the order 106 Pa. A dimensionless value is always of uniform size,
on the order of one.

The way Sage converts a dimensioned value to a dimensionless one is by
dividing by the normalization value. Sage automatically maintains a default
normalization value for each optimized variable, constraint or objective function.
The basis for these normalization values are special input constants, usually
defined in the top-level model component and usually with the suffix “norm”
in the variable name, as in Lnorm. So, for example, a gap of 10−5 m becomes,
in dimensionless form, gap / Lnorm. Normalization constants for the more-
complicated expressions found in constraints and objective functions are built
up as similar expressions involving basic normalization constants.

The good news is that you need not be concerned about normalization values
in most cases. As long as the normalized values of all optimized variables,
constraints and the objective function are within an order of magnitude or two
of each other, the optimizer can successfully complete the optimization. On
rare occasions, however, a normalization value can be too small or too large.
If too small, then the optimizer is fooled into stepping farther than necessary
when making finite-difference approximations to partial derivatives. Sometimes
stepping so far that the model solution fails to converge. If the normalization
value is too large, then the optimizer may not step far enough to get an accurate
finite-difference result. Or it may be lulled into thinking that the optimization
has converged because the objective function is changing by what it things is a
very small amount.

50 CHAPTER 6. OPTIMIZING

To allow you to diagnose this sort of problem, the value displays of optimized
variables, constraints and the objective function (visible in display windows
during optimization or after Process|Compile Optimization) include the normal-
ization value in parenthesis, as in (norm = 1.654E-2), or some such. So, for
example, if your objective is to maximize Wpv (where Wpv might be a user-
defined variable for stirling-engine PV power output), you might expect trouble
if Wpv is of the order 10 W, and norm is of the order 104. To remedy the prob-
lem, you would set the normalization scale factor for the objective function to
10−3, using the edit box in the specification dialog. This would correct the value
of norm to 10 (visible after another Process|Compile Optimization), resulting in
a better conditioned optimization problem.

Chapter 7

Editing Model Structure

In Sage, you edit (create or modify) a model’s structure within a graphical
interface known as the edit form, within the main Sage form. The edit form
contains a number of pages at different levels of the model hierarchy. These
pages are created as explained below and selected by mouse-clicking on the
tabs at the bottom of the edit form. The leftmost page always shows the child
components of the root-level model component.

The edit-form root page for a simple resonant-system model might look like
this:

Visible in the window are graphical icons representing child model compo-
nents of the root model. Attached to the child-model icons are arrows corre-
sponding to their boundary connections. An arrow with a number beside it
indicates an active connection to another model icon within the same window.
Active connections are identified by matching numbers. Arrows without num-
bers indicate potential connections, as yet unmade. The reason connections are
indicated with numbers rather than attachment lines is to avoid cluttering up
the window in complicated models.

Boundary connections can be made freely, but only among similar type con-
nectors. Similar type connectors are indicated by the symbolic code next to the
arrows. In the above example, the arrows labeled FGt indicate time-ring forces

51

52 CHAPTER 7. EDITING MODEL STRUCTURE

(solved on a periodic time grid) capable of represents sinusoidally time-varying
quantities as well as higher harmonics.

7.1 Basic Operations

The edit form has a basic mouse interface for certain common operations.

7.1.1 Selecting Components

Each model-component icon in the edit form has a caption bearing the name
of the model component it belongs to. Clicking on a component icon highlights
its caption bar, which activates that model component for pertinent menu op-
erations. You can select multiple model components by holding down the shift
key while mouse clicking on them or dragging a selection rectangle over them.
In that case the active model component is the one most recently selected.

7.1.2 Positioning Icons

Holding down the left mouse button while the mouse cursor is on a component
icon allows you to drag the icon anywhere within the edit form. Releasing the
mouse button drops the icon at its new position. Continuing to hold down the
shift key after selecting multiple model components allows you to move them as
a group. You can also use the arrow keys to move selected model components.

7.1.3 Navigating the Model Tree

Model components can have child components, and so on for several generations.
To display a component’s children just double-click on its icon. This adds a new
page to the edit form and a new tab at the bottom. You can re-display the parent
component by clicking on its tab.

The tabs hold only a single branch pathway from the root to some lower-
level component. When you change the tail of a path, by double clicking on a
different component icon, the tabs corresponding to the old tail disappear.

7.2 Component Palette

When the edit form is active, a model-component palette appears near the top
of the main Sage form. This palette contains buttons representing the seeds
for new model components which can germinate in the current page of the
edit form. The buttons of the palette are themselves arranged in tab-selected
pages corresponding to different categories of model components. The available
components in the palette are those which make sense in the context of the
parent component, generally a small subset of the total number of components

7.3. CONNECTIONS 53

in the model class. The component palette for the Basic tab of the root model
looks like this

To create a new model component click a button in the component palette,
then click again in the edit form at the position you want the component to
reside. Once you’ve created a model component you can drag it around the edit
form with the mouse, as describe above.

Considerably more difficult than the problem of creating model components
is deciding which ones to create in the first place. For help with this you might
want to look at the sample data files distributed with your particular model
class. You can also find detailed information about each model component in
other sections of this user’s guide.

7.3 Connections

Making or breaking connections between model components is simply a matter
of drag-and-dropping a connector to its mate.

To connect together two compatible boundary connectors, click on the first
connector arrow with the left mouse button, then with the button held down
position the mouse cursor on the second connector arrow and release the button.
The first-clicked connector arrow establishes the type of the connection, and
locks it in. The connector arrow you drag to must then be a mating arrow
(opposite sense) of the same type (label).

Breaking connections is just like making them. Click on the first connector
arrow with the left mouse button, then with the button held down position the
mouse cursor on the mating connector arrow and release the button.

Clicking on a connection arrow for an active connection highlights the mat-
ing connector arrow at the other end of the connection. Hovering the mouse
over a connection arrow displays a popup window that traces the source of the
connection within the model component and also shows the current value of the
quantity flowing through the connection if the connection is active.

7.4 Changing Connector Level

Often, the desired mate to a boundary connector resides at another location in
the model tree, not displayed on the same page of the edit form. So the two
boundary connectors are not immediately connectable. In this case it is always
possible to trace up the model tree (toward the root) from each boundary-
connector’s model component to find two ancestor model components that ap-
pear within a common page. This is useful because, in Sage, you are allowed to

54 CHAPTER 7. EDITING MODEL STRUCTURE

move boundary connector arrows up the model hierarchy. Connector arrows so
moved appear attached to the ancestor model-component icon. Once they are
there they may be attached to any compatible boundary connector at the new
level. By doing this for our original two star-crossed connector arrows, they can
be eventually joined.

To move a boundary-connector arrow up the model tree (toward the root)
first highlight the arrow by clicking on it then click on the Inc connector level
speed button in the main Sage form (red up-directed arrow) or use the Edit|Up
Connector menu command. If you hold-down the shift key, you can highlight
several connector arrows at the same time, after which you can move them as a
group. But you can only highlight an arrow that is not already connected.

To move a boundary-connector down the model tree, first highlight one (or
several) disconnected arrows then click on the Dec connector level speed button
in the main Sage form (red down-directed arrow) or use the Edit|Down Connector
menu command.

The notions of up and down may or may not make sense to you, depending
on your mental picture of a model tree. For purpose of moving connectors you
might want to visualize the model tree with the root at the top and branches
extending downward.

7.5 Cut and Pasting Model Components

The standard Window’s conventions for cutting and pasting blocks of text in a
text editor apply to model components in the edit form. Cut and copy operate
on the currently selected model components and insert those component into a
clipboard-like temporary storage area. The clipboard is the source for one or
more subsequent paste operations.

This clipboard is not the same as the standard Window’s clipboard for tex-
tual information. So you will not be able to paste into another Windows appli-
cation a model component cut from Sage.

7.5.1 Copy

First highlight a model component by clicking on its icon or select multiple
model components by holding down the shift key while clicking on them or
dragging a selection rectangle over them. Then click on the Copy speed button
in the main Sage form (overlapped pages) or use the Edit|Copy Model(s) menu
command. The model components, including all generations of child compo-
nents, are now copied into the clipboard for subsequent pasting. Copying does
not affect the existing model components so it is useful for cloning or duplicating
those model component as sibling components.

This only works for model components that are not connected to other model
components outside the selection group. If you want to copy model components
connected externally first break any boundary connections to components out-

7.6. CHANGING MODEL COMPONENT BITMAPS 55

side the group (possibly at a higher level in the model tree) using the drag-and-
drop techniques described above.

7.5.2 Cut

First select model components as for copying. Then click on the Cut speed
button in the main Sage form (scissors) or use the Edit|Cut Model(s) menu
command. This is just like the copy operation except the model component is
deleted from the edit form.

7.5.3 Delete

First select model components as for copying. Then press the delete key or use
the Edit|Delete Model(s) menu command. There is no undo option after deleting
model components.

7.5.4 Paste

Following a copy or cut operation, click on the Paste speed button in the main
Sage form or use the Edit|Paste Model(s) menu command to clone new model
components into the edit form. Model components can only be pasted into
the same parent model component they were copied from or to compatible
parent having seeds in its child-creation palette of the same class types as the
components to be pasted.

7.6 Changing Model Component Bitmaps

The Edit|Change Bitmap menu command allows you to change the bitmap images
used to represent model components in the edit window. The command is keyed
to the model component currently focused in the edit window. When you select

56 CHAPTER 7. EDITING MODEL STRUCTURE

this command a dialog pops up, like this:

Pressing the “Load From File” button allows you to load a new image from
any bitmap file (*.bmp) that you have previously created using some graphical
editing software. Pressing the “Restore Default” button restores the bitmap
originally assigned to the model component by Sage when it was first created.

The default bitmaps for Sage model components are all 64x64 pixel black-
and-white bitmaps that were originally created with an early Borland appli-
cation called Resources Workshop. Borland has stopped actively promoting
Resources Workshop, but any other graphics editing software should do as
well, provided it supports creating Windows compatible bitmap files (*.bmp).
Bitmaps do not have to adhere to the 64x64 black-and-white format. You can
load any size bitmap and even in color. You may use a bitmap rendered by
CAD software or captured from a computer screen image. But keep in mind
that the bitmap image will become embedded in your model file and affect its
storage size accordingly.

The change-bitmap feature gives you control over the illusion of what the
model component is intended to do. Do not underestimate this illusion. Ap-
propriate bitmap images go a long way toward making a Sage model compre-
hensible. You may not want to change the default bitmaps for any of Sage’s
individual model components but submodels are another matter. If you have
a model containing submodels you might find it useful to change their default
images to something representative of what they actually do.

Chapter 8

Variable Types

Sage models employ a number variable types that you need to be aware of.
These include the common integer and real (floating-point) variables but go on
quite a bit beyond that.

8.1 Integers

Integer variables display as numerals without decimal points like this:

NCell number spatial cells 2

Sometimes integer variable inputs are restricted to a range of values.
You may reference integer variables directly by name in user-defined alge-

braic expressions. They are converted to real values when you do this.

8.2 Reals

Real variables display in exponential format like this:

Freq frequency (Hz) 5.500E+01

Sometimes real variable inputs are restricted to non-negative, strictly positive
or values within some prescribed closed interval. You may enter real values in
dialog boxes with or without decimal points or the E suffix.

Real variables may be referenced directly by name in user-defined algebraic
expressions.

8.3 Complex

Complex variables display in an extended exponential format like this:

57

58 CHAPTER 8. VARIABLE TYPES

F boundary force (N) (-9.466, 7.633)E+01

The numbers in parenthesis are the real and imaginary parts and the E+01 is
the common power-of-ten multiplier. The above example is equivalent to the
complex number (−94.66, 76.33) or −94.66 + 76.33i, where i is the imaginary
unit (i =

√−1).
In model components with an underlying basis in linear differential equa-

tions, complex amplitudes are often used to represent sinusoidal time-varying
quantities. Presuming this to be the case in the above example, physical bound-
ary force would actually be understood as the real-part of Feiωt, or

physical boundary force = −94.66 cosωt − 76.33 sinωt

If we look at this as just the first-harmonic terms in a Fourier-series expansion
∑

(an cosnωt + bn sinnωt), we note that a1 = <F and b1 = −=F , where <F
and =F are the real and imaginary parts of complex amplitude F .

Complex variables are not directly referenceable in user-defined algebraic
expressions. However for a complex variable X, the following subfields are ref-
erenceable:

X.real real part
X.imag imaginary part
X.amp amplitude or modulus
X.arg argument or phase angle
X.cos cosine coefficient a1 of Fourier series representation
X.sin sine coefficient b1 of Fourier series representation

According to the preceding paragraph X.cos = X.real and X.sin = -X.imag.

8.4 Phasors

Phasors are just complex numbers displayed in polar form. A typical phasor
variable would be displayed like this:

F boundary force (N) 1.216E+02 cis(2.463)

The leading coefficient (1.216E+02 in this case) is the complex magnitude or
amplitude — the length of the phasor. The number in parenthesis (2.463) is
the phase angle in radians measured counterclockwise from the positive real
axis. The notation “cis” reads “cosine plus i sine”, where i is the complex
unit. In other words, the above variable is equal to the complex number
121.6 cos(2.463) + 121.6i sin(2.463), which is the same as the number in the
previous example.

Under the convention that boundary force actually represents a complex
amplitude for a sinusoidal time-varying quantity, we would now have

physical boundary force = 121.6 cos(ωt + 2.463)

8.5. FOURIER SERIES 59

If we look at this as just the first-harmonic term in a Fourier-series cosine
expansion

∑
(cn cos(nωt + rn), we have c1 = |F | and r1 = 6 F , where |F | and

6 F are the magnitude and phase angle of phasor amplitude F .
Phasors are indirectly referenceable in user-defined algebraic expressions

through the same subfield identifiers as for complex numbers.

8.5 Fourier Series

Fourier-series variables have a multi-line display like this:

FTmean x-mean temperature (K) 2.990E+02...

(1.597, 0.428, 0.301)E+01 Amp

(-2.894, -0.431, 3.142)E+00 Arg

The number to the right on the first line is the time-mean value and numbers
in the subsequent two lines are the common-exponent amplitudes and phases
of the first three harmonics in the Fourier-series cosine expansion. The above
example is an abbreviation for

T = 299

+ 15.97 cos(ωt− 2.849)

+ 4.28 cos(2ωt− 0.431)

+ 3.01 cos(3ωt+ 3.142)

where t is time and ω is angular frequency. The amplitude and phase of the
first harmonic in a Fourier cosine series correspond to the amplitude and phase
of a complex or phasor-type variable.

An alternate, though less common, format is in terms of coefficients in a
cosine-sine expansion like this

FTmean x-mean temperature (K) 2.990E+02...

(-1.529, 0.389, -0.163)E+01 Cos

(0.461, 0.179, -0.253)E+01 Sin

which would be an abbreviation for

T = 299

− 15.29 cosωt+ 4.61 sinωt

+ 3.89 cos2ωt+ 1.79 sin2ωt

− 1.63 cos3ωt− 2.53 sin3ωt

The two representations are completely equivalent, as can be seen by applying
the cosine angle-addition formula to the cosine series

∞∑

n=1

cn cos(nωt+ rn) =

∞∑

n=1

(cn cos rn) cosnωt −
∞∑

n=1

(cn sin rn) sinnωt

60 CHAPTER 8. VARIABLE TYPES

=

∞∑

n=1

an cosnωt +

∞∑

n=1

bn sinnωt

Evidently, one can convert from cosine-only to cosine-sine series using the rela-
tionships

an = cn cos rn

bn = −cn sin rn

or conversely

tan rn = −bn/an

c2n = a2
n + b2n

However, one must use caution if the need arises to shift the reference phase
in an amplitude-phase expansion. Each harmonic shifts phase by a different
amount. To see this note that if f(τ) = cos(nτ + rn), where τ = ωt, then

f(τ − α) = cos(n(τ − α) + rn) = cos(nτ + rn − nα)

from which it is clear that the n-th harmonic for a function phase-shifted by α
is phase-shifted by an amount nα compared to the original ωt series.

The number of harmonics displayed is automatic in the case of an output
variable. It is generally half the number of time nodes specified in the underlying
computational grid, the maximum resolvable amount according to the Nyquist
sampling theorem.

For an input variable, the number of harmonics is up to the user, although
higher harmonics are not resolvable, and in fact will cause aliasing errors, in
any computational grid containing fewer than twice as many time nodes as the
number of the harmonic. Amplitudes and phases for individual harmonics are
changed via dialog-box commands.

The higher-frequency harmonics in a Fourier-series output variable should
be small compared to the lower-frequency harmonics. When this is the case, it
suggests that the number of time nodes in your model’s time grid is sufficient to
resolve the solution and all is well. If this is not the case, then you may be fooling
yourself. At best, the higher-frequency harmonics are simply missing from the
output. At worst, they are actually showing up as erroneous contributions to
low-frequency harmonics, in which case you may be in for a rude awakening in
the test cell. So keep an eye on those high-frequency coefficients and increase
the time nodes in your solution grid if necessary.

Fourier-series variables are not directly referenceable in user-defined alge-
braic expressions. However for a Fourier-series variable X, the following subfields
are referenceable:

X.mean time-mean value
X.cos.n nth-harmonic cosine coefficient
X.sin.n nth-harmonic sine coefficient
X.amp.n nth-harmonic amplitude
X.arg.n nth-harmonic phase angle

8.5. FOURIER SERIES 61

In the last four cases, n is an integer, ranging from 1 up to the maximum
available harmonic index.

Interpolation You may also reference the evaluated result of a Fourier-series
variable by following the variable name with an argument enclosed in paren-
thesis. For example, if X is a Fourier-series variable then X(0.5) returns X
evaluated at ωt = 0.5. The argument can be any valid expression as defined in
chapter 9, not just a simple constant. The dimensional units of the argument
are presumed to be the same as the current dimensional units in effect for angles
(Options|Model Class dialog).

8.5.1 Discrete Representations

There are some subtle differences between Fourier-series representations of con-
tinuous functions and representations of discrete functions defined only at the
nodes of a time grid. You should be aware of these in case you plan to work
out the Fourier coefficients of a special function defined in terms of a table
of values. The general formulation for a function f(τj), defined at points
{τj = 2πj/N : j = 0 . . .N − 1} is

f(τj) = fm +
M∑

n=1

(an cos nτj + bn sinnτj)

In the above formula, N corresponds to the Sage input variable NTnode and M
is either N/2, if N is even, or (N − 1)/2, if N is odd. Variable τ substitutes for
ωt. The Fourier-series coefficient are

mean value

fm =
1

N

N−1∑

j=0

f(τj)

cosine coefficients n = 1..M

an =
2

N

N−1∑

j=0

f(τj) cos nτj

sine coefficients n = 1..M

bn =
2

N

N−1∑

j=0

f(τj) sinnτj

Except for the case N even, where aM is half the above value and bM = 0
(technically, bM is half the above value too, however it evaluates to zero because
sinMτj is always zero). For Sage input variables in terms of cosine-coefficients

62 CHAPTER 8. VARIABLE TYPES

only, the previous conversion equations can be used to convert the an and bn
coefficients to cn and rn.

The above formulation is the real equivalent of the complex discrete Fourier
transform, which says for a complex-valued function F

F (τj) =

N−1∑

n=0

cne
inτj

if and only if

cn =

N−1∑

j=0

F (τj)e
−inτj

The real equivalent follows after substituting (an,−bn)/2 for cn, assuming F is
real and making some simplifications.

Case: Impulse Function

A simple example should make it clear how to use the above definitions to
translate a tabular function to Sage inputs. In this case, the tabular function is
the impulse function which takes the value N at τ0 = 0 and zero for all other
τj . When plotted out, the impulse function looks like this:

τ0 τ1 . . . τN−1

c

c c c c c

N

impulse function f(τj)

Since this is an even function (f(τj) = f(τN−j)), only the cosine coefficients
are nonzero. And even then, most of the terms in the above summations drop
out because f(τj) = 0 for j ≥ 1. So with a little thought, it is clear that the
expansion for the impulse function for the case of N (NTnode) even is

f(τj) = 1 + 2 cos τj + 2 cos 2τj + . . .+ 1 cosN/2 τj

The impulse function phase-shifted by α would be

f(τj) = 1 + 2 cos(τj + α) + 2 cos(2τj + 2α) + . . .+ 1 cos(N/2 τj +N/2α)

For the case of N odd, the coefficient of the last term would be 2, rather than
1 and its order would be (N − 1)/2, rather than N/2.

8.5. FOURIER SERIES 63

8.5.2 Complex Solution Formulations

Sage was designed to model physical systems driven by periodic boundary con-
ditions, often sinusoidal functions time. In many cases such systems are ap-
proximated by linear differential equations amenable to solutions in terms of
complex exponential functions. Although Sage mostly solves systems governed
by nonlinear differential equations on a time grid, there are cases where lin-
earized complex solutions are useful. For example, in deriving phase-shifted
heat transfer and flow-friction correlations in solid and gas domains. In such
cases Sage employs a standard technique for converting between time-grid solu-
tions and linearized complex solutions, illustrated below for the case of a solved
temperature T taken to be the real part of the complex temperature variation

T (t) = (Tr + iTr)e
iωt = (Tr + iTi) (cos(ωt) + i sin(ωt)) (8.1)

Tr and Ti are the real and imaginary components of a complex temperature
amplitude. Expanding the right-hand side of the above equation the real and
imaginary parts of the complex temperature variation are

<T (t) = Tr cos(ωt) − Ti sin(ωt) (8.2)

and
=T (t) = Tr sin(ωt) + Ti cos(ωt) (8.3)

The real-part <T corresponds to the physical solved temperature. From the
above definition of a Fourier series it is clear that the complex temperature
amplitude is related to the coefficients of the Fourier-series expansion for tem-
perature, according to

Tr = a1 (8.4)

and
Ti = −b1 (8.5)

where a1 and b1 are the cosine and sine coefficients of the first harmonic.
This way a nearly sinusoidal solution on a time-grid can be converted to

an approximate complex amplitude using equations (8.4) and (8.5). A complex
amplitude can be converted to a time grid value by evaluating equation (8.2) at
the grid-node time value.

Prior to Sage version 12 (July 2021) the complex temperature variation
in the above example would have been calculated differently, from the local
approximation

T (t) ≈ (T − Tm) − i
∂T

∂ωt
(8.6)

where T is the instantaneous physical temperature and Tm is the time-mean
temperature. This is valid for sinusoidal temperature variations, because then
T − Tm = <T and by direct differentiation of equation (8.2) it follows from
equation (8.3) that =T = − ∂T

∂ωt
. But for solutions with large higher harmonic

64 CHAPTER 8. VARIABLE TYPES

content the terms on the right-hand side would not vary sinusoidally so that
any complex heat transfer or flow friction terms derived from the resulting
complex temperature variation would also tend to have large higher harmonics,
inconsistent with the linearized complex solutions upon which they were based.
So this formulation was abandoned in version 12.

8.6 Data Pairs

Data-pair variables have a multi-line display like this:

ExtrmT temperature extremes (NonDim, K) data pairs...

(0.000E+00, 3.000E+02)

(2.500E-01, 4.000E+02)

(1.000E+00, 2.000E+02)

Within the parenthesis, the left number represents the independent variable
and the right number the dependent variable. In this example we have the
extreme temperature values occurring at dimensionless positions 0, 0.25 and
1.0, respectively. Generally speaking, data-pair variables are used as outputs.

Data-pair variables are not directly referenceable in user-defined algebraic
expressions. However for a data-pair variable X, the following subfields are
referenceable:

X.TData.n nth independent value in X’s defining data
X.FData.n nth dependent value in X’s defining data

where n ranges from 1 to the number of interpolation pairs defining X. For
example ExtrmT.FData.2 in the above example would be 4.0E2.

The notation TData and FData to denote independent and dependent values
requires some explanation. Sage’s original purpose for data pairs was to store
physical properties F (T) as a function of temperature T . In that context the
notation TData and FData makes perfect sense. Later on data pairs were used
to represent other independent variables as well but the designation TData for
the independent value was retained.

8.7 Cubic Splines

Cubic-spline variables are similar in outward appearance to data-pair variables.
They have a multi-line display like this:

Tinit initial temperature (NonDim, K) unit spline..

(0.000E+00, 3.000E+02)

(5.000E-01, 6.000E+02)

(1.000E+00, 9.000E+02)

8.8. ENUMERATED 65

What you see are interpolation pairs through which a cubic-spline curve will
be fit, with the left number representing the independent variable and the right
number the dependent variable. In this example we have the specifications
for a cubic spline passing through the temperatures 300K, 600K and 900K at
dimensionless positions 0, 0.5 and 1.0, respectively. The number of interpolation
pairs is arbitrary so long as there are at least two. Changing them is easily done
via dialog box commands.

Generally speaking, cubic spline variables are used to specify things like
initial temperature profiles or interpolation data for material properties. The
independent variable may be dimensionless, as in this example, or itself a dimen-
sioned quantity. This is generally clear from context. Further information for
specific variables can be found in the documentation for the model component
in which it resides.

Cubic-spline variables are not directly referenceable in user-defined algebraic
expressions. However for a cubic-spline variable Y, the following subfields are
referenceable:

Y.TData.n nth independent value in Y’s defining data
Y.FData.n nth dependent value in Y’s defining data

where n ranges from 1 to the number of interpolation pairs defining Y. For
example Tinit.FData.2 in the above example would be 6.0E2;

Interpolation You may also reference the interpolated value of a cubic-spline
variable by following the variable name with an argument enclosed in parenthe-
sis. For example, if Y is a cubic-spline variable then Y(0.25) returns Y interpo-
lated at x = 0.25, where x is the independent variable. The argument can be
any valid expression as defined in chapter 9, not just a simple constant. The
dimensional units of the argument are presumed to be the same as the current
dimensional units in effect for the independent variable (Options|Model Class
dialog).

TBelow Operator The TBelow operator evaluates the total duration of the
independent variable T for which the dependent interpolation function F is
below a given value. For example if Y(t) is a time-function cubic-spline variable
then Y.TBelow(1.0) returns the total time duration for which Y is below 1.0.
The TBelow operator works even if the independent variable is not time. For
example, if Y(x) is a function of position then Y.TBelow has the units of length.
In general, TBelow has the units currently in effect for the spline’s independent
variable (Options|Model Class dialog). The dimensional units of the argument
are presumed to be the same as the current dimensional units in effect for the
dependent variable.

8.8 Enumerated

Enumerated variables display like this:

66 CHAPTER 8. VARIABLE TYPES

Solid wall material SS304...

where the identifier on the right is one of several discrete alternatives selected
in a dialog box. If you select the “name only” display option within the Sage
options dialog (Options|Sage menu command) this is all you will see. If you select
the “full detail” display option, enumerated variables are followed by additional
display lines containing further information. For example, the above variable is
followed by

Rhos = 7.800E+03 (kg/m3)

(T, Ks(T))... (K, W/(m K))

(3.000E+00, 1.800E-01)

(6.000E+00, 4.800E-01)

(1.000E+01, 9.000E-01)

(2.000E+01, 2.200E+00)

(4.000E+01, 4.600E+00)

(1.000E+02, 8.100E+00)

(3.000E+02, 1.470E+01)

(1.500E+03, 3.000E+01)

(T, Cs(T))... (K, J/(kg K))

(3.000E+00, 1.500E+00)

(6.000E+00, 3.000E+00)

(1.000E+01, 5.300E+00)

(2.000E+01, 1.340E+01)

(4.000E+01, 5.700E+01)

(1.000E+02, 2.210E+02)

(3.000E+02, 4.850E+02)

(1.000E+03, 6.100E+02)

(1.500E+03, 6.600E+02)

which define its density and cubic-spline interpolation pairs used for its conduc-
tivity and specific heat. Values are displayed in the current dimensional units
set in the Model Class | Options dialog.

You can reference the individual properties of enumerated variables in user-
defined algebraic expressions. You can also change those properties or add
new materials to the enumerated list using one of the property-editing utilities
supplied with the Sage software distribution. More information on these topics
can be found in chapter 28.

Chapter 9

Entering Algebraic
Expressions

Algebraic expressions are the common element of constraints, objective func-
tions and user-defined variables. You enter them as ordinary strings of text
within Windows edit controls. Then, at the appropriate time, Sage reads and
interprets (parses) them and converts them to meaningful calculations. A typ-
ical dialog box in which you are asked to enter an expression is the one for
user-defined variables which looks like this:

In all cases, the expression you enter is the basis for Sage to calculate some
new value in terms of other variable values in the model. But there are rules of

67

68 CHAPTER 9. ENTERING ALGEBRAIC EXPRESSIONS

syntax to follow.
Programmers will have an advantage here because the expressions under-

stood by Sage follow the common rules of syntax for most programming lan-
guages — particularly Pascal. For example, if A, B, and C are valid variable
identifier names, then the following are all valid expressions:

A + B - C

A + 2*B

((A+B)/C + 3.0E-2) / 5.0

Of course, most variable names are longer than a single character.
Sage does not get around to actually parsing your expression until you tell

it to, by selecting the Process|Solve, Process|Parse Solution, Process|Optimize or
Process|Parse Optimization menu commands. This allows you to reference iden-
tifiers not yet created and otherwise get away with anything in your expression.
If, after you have entered your expression and closed its dialog box, you want
Sage to check it for errors, just select Process|Parse Solution in the case of a
user-defined variable or Process|Parse Optimization in the case of a constraint or
objective function. These commands are equivalent to the compile step in a con-
ventional computer language. If you are pretty sure your expressions are correct
you can omit this step and proceed directly to Process|Solve or Process|Optimize.
In this case, compiling, if successful, will be immediately followed by execution.

9.1 Ground Rules

Sage expressions are not case sensitive. That is, upper and lower case letters
are equivalent within identifiers or constants. (Although there is only one valid
letter for constants: E or its lower-case equivalent e used in an exponential
format like 1.0E-2).

Generally speaking, Sage ignores blank spaces, whether leading, trailing or
embedded within your expression. You are welcome to use them, though, to sep-
arate variable identifiers from numerical constants or operators, thereby making
your expressions more readable. However, blank spaces do connote separation.
So you must not embed them within identifiers or constants, otherwise Sage will
misunderstand your meaning.

9.2 Identifiers

The identifiers used in expressions are the variable names already in use in the
model or those you create yourself for user-defined variables. All must begin
with a letter, followed by one or more letters or digits. The following are all
valid identifiers

x

Y1

Aardvark

PowerOutput

9.3. OPERATORS 69

Some variable types have sub-fields that are accessed by appending a period
directly after an identifier name, followed by the appropriate qualifier. For
example, if Aardvark is a phasor-type variable, then

Aardvark.amp

Aardvark.arg

are valid identifiers. Aardvark alone, although valid as an identifier, will gener-
ate an error at compile time because it cannot be resolved into a floating-point
type. See chapter 8 for the subfield qualifiers for the various types of variables.

9.3 Operators

The list of valid operators is

+ add
- negate or subtract
* multiply
/ divide

Parenthesis may be used in the usual way to control operator precedence,
and they may be nested to any level. Lacking parentheses, operations occur
in the usual pecking order. That is, multiplication and division come before
addition and subtraction. For example, (3 + 4 / 2) evaluates to 5 not 7/2.

9.4 Constants

Numerical constants are also allowed in expressions. They are always under-
stood as floating-point numbers, rather than integers. The following are all valid
representations for the same constant:

234

2.34E+02

234.0

Constants may not begin with a period. In other words, .234 is not a valid
constant. The reason for this rule is to avoid confusion with periods as subfield
qualifiers in identifiers.

Constants in algebraic expressions require the period as the decimal separa-
tor character regardless of the Windows operating system regional setting for
that character. In Sage algebraic expressions special characters like ’.’ and ’,’
have precise meanings depending on the context in which they occur. These
meanings cannot change depending on regional settings lest algebraic expres-
sions created under one set of regional settings be invalid when parsed under
another.

70 CHAPTER 9. ENTERING ALGEBRAIC EXPRESSIONS

9.5 Built-In Functions

Sage has a number of built-in functions you can use in expressions. These
require either zero, one or two arguments following the function identifier, en-
closed within parentheses. In the following table, the first argument is indicated
by x, the second by y and either one may be another expression, perhaps in-
volving a nested function. For example Sqrt(10 * Abs(ArcSin(Pi))) is
a legitimate construct.

function meaning restrictions

Pi π (3.14159. . .)
Abs(x) absolute value of x
Sqrt(x) square root of x x ≥ 0
Sqr(x) square of x
Exp(x) exponential function of x
Ln(x) natural logarithm of x x > 0
Sin(x) sine of x
ArcSin(x) inverse sine of x x in [−1, 1]; result in [−π/2, π/2]
Cos(x) cosine of x
ArcCos(x) inverse cosine of x x in [−1, 1]; result in [0, π]
Tan(x) tangent of x
ArcTan(x) inverse tangent of x result in [−π/2, π/2]
Sinh(x) hyperbolic sine of x
ArcSinh(x) inverse hyperbolic sine of x
Cosh(x) hyperbolic cosine of x
ArcCosh(x) inverse hyperbolic cosine of x x ≥ 1; result ≥ 0
Tanh(x) hyperbolic tangent of x
ArcTanh(x) inverse hyperbolic tangent of x result in (−1, 1)
Max(x, y) larger of x and y
Min(x, y) smaller of x and y
Power(x, y) exponentiation (xy) x > 0
Amp(x, y) magnitude of complex number (x, y)
Arg(x, y) phase of complex number (x, y) result in [−π, π]

The arguments of the trigonometric functions are in radians. The Power func-
tion is mainly intended for raising positive arguments to fractional powers. For
polynomial expressions using integer powers it is faster and less restrictive (can
use a negative x) to use direct multiplication, perhaps in conjunction with the
Sqr function — for example, x*Sqr(x) to represent x3.

9.6 Model-Specific Functions

In addition to the built-in functions, any referenceable cubic-spline or Fourier-
series variable in your model may also be used as a function by following its
identifier name with an argument enclosed in parentheses. For example, if Area
is a cubic-spline variable, then

Area(0.5)

9.7. REFERENCEABLE VARIABLES AND QUALIFIERS 71

is a valid expression that returns the interpolated value of Area at x = 0.5,
where x is the independent variable. The argument can be any valid expression,
not just a simple constant.

In general, the units of the argument are dimensional according to the units
in effect for the independent-variable part of the underlying cubic-spline or
Fourier-series variable. In the case of Fourier-series variables, the argument is al-
ways an angle with units of radians or degrees as specified in the Options|Model
Class dialog. In the case of cubic-spline variables, the argument is often di-
mensionless but not always. If not dimensionless, its units are listed after the
variable definition in the display window or output listing. Argument units may
matter if you specify an argument as a simple constant then change the units
setting that applies to the argument. For example, if P is a Fourier-series vari-
able then P(45) will mean one thing if the units for the argument are degrees
and quite another if radians.

9.7 Referenceable Variables and Qualifiers

You may not just include any old identifier name in the expression you enter.
It must be the name of a referenceable identifier. That is, an identifier known
to exist at the current level within the model structure and, if it is not a real
or integer type variable, with potential to be converted to a floating-point value
through a subfield qualifier, as noted above. For your convenience, identifiers for
all currently referenceable variables are presented in a list box at the bottom left
of any dialog requiring you to enter an expression. Clicking on an identifier in
the list will display its possible subfield qualifiers, if any, in the box to the right
(see the above illustration). You cannot drag and drop identifiers and qualifiers
into your expression. You must type them in, with a period separating the two
(if a qualifier is required). Be alert for qualifiers requiring sub-qualifiers, such as
most Fourier-series qualifiers and cubic-spline qualifiers as explained in chapter
8. Sub-qualifiers are generally integer indices and you must remember to type
them in yourself.

The rule about only using referenceable identifiers from the list box is not
a hard and fast rule. You may reference other identifiers in your expression as
well, if you want. But before you actually compile your expression you must
create a user-defined variable having that name and whose scope includes the
model level in which your expression resides.

9.8 Variable Scope

The default scope of a variable is the model component in which it resides and
all generations of its child models. Looking at it another way, you may reference
from a child model component any variable defined in a Parent model, or an
ancestor any number of generations back. But you cannot reference the other
way. At least not usually. The reason for this is to prevent variable name

72 CHAPTER 9. ENTERING ALGEBRAIC EXPRESSIONS

conflicts from the point of view of a parent model component looking at two or
more children with the same variable identifier.

There is a way around this restriction, though, in the case of user-defined
variables. For these, the default variable scope applies at the moment of cre-
ation, but may be manually extended to include any number of generations back
by clicking on the Increase button located at the bottom of the Specify|User Vari-
ables dialog box. The so-called export level may be reduced again by clicking on
the Decrease button. This scope extending feature is very useful when you need
to compute big-picture quantities in terms of variables localized in a number
of distinct model components. You simply export the various local variables to
some common level, say the root model, then reference them there in constraints,
the objective function or other user-defined variables.

One final note: problems of self-reference will cause a runtime error as the
numerical co-processor stack overflows. Self reference will occur if a variable
named A references a variable named B in its defining expression while at the
same time B references A. While such referencing may be allowed in computer
languages that assign values in strict sequential order, this does not apply to
Sage.

Chapter 10

Specifying Drivable
Variables

Drivable variables are those whose values are automatically assigned by a Sage
driver, such as the mapper or optimizer. Generally speaking, drivable variables
must be real-valued independent inputs. However, they may also be real parts
of certain complex (phasor), splines or Fourier-series variables, provided they
are independent inputs. Dependent (output) variables are not drivable, for
obvious reasons. Nor are constants (certain inputs) because of assumptions
about constants made by the optimizer – namely, that they be constant.

Drivable variables are specified by their identifier name along with an op-
tional subfield qualifier, similar to the way variables are referenced in algebraic
expressions. But when specifying drivable variables there is no need to manu-
ally type in identifier + qualifier. You just select the two from combo-box lists
within the selection dialog. For example, the selection dialog for an optimized
variable (Specify|Optimized Variables) might look like this:

If there is no qualifier required for a selected identifier you will not even see
the qualifier list.

The above selection process applies in most cases. However, for Fourier-
series or cubic-spline variables, where the qualifier requires a subqualifier, as

73

74 CHAPTER 10. SPECIFYING DRIVABLE VARIABLES

explained in chapter 8, you must manually append the sub-qualifier to the qual-
ifier. The sub-qualifier is generally an integer index which you type directly into
the qualifier combo-box as an edit control. Be sure to separate qualifier from
sub-qualifier with a period.

Chapter 11

Behind the Scenes

Sage model components and their variables are nothing at all like the constructs
found in a typical scientific programming language like FORTRAN. They are,
instead, examples of software objects which may be loosely defined as encap-
sulated data structures with built-in methods (functions and procedures) to
manipulate their data. If this has you curious then by all means read this
chapter. Otherwise you may skip it. You can run Sage perfectly well without
knowing anything about its computer-science architecture.

11.1 Smart Variables

A good place to start is with the fundamental building blocks of Sage models:
the variables. These are much more than named memory locations. As software
objects they have some useful behaviors as well. For example, they know their
names. They know how to format themselves for input and output. They know
when their stored value is valid, or if it is not, how to call the proper evaluation
function to make it valid. And they have a context within an overall solution
scheme.

All variables are created either constant, independent, dependent or im-
plicit. A constant is a variable whose value you may set via menu command at
any time but remains fixed thereafter. An example of a constant would be a
real-valued normalization quantity. An independent variable is like a constant
except its value may also be set by an external driver, such as the mapper or
optimizer. Collectively, constants and independent variables form the inputs of
a model component. A dependent variable is one whose value depends on other
variables, possibly other dependent variables, but eventually on non-dependent
variables. Sage models contain mechanisms to invalidate dependent variables
when the variables upon which they depend change. After invalidation, a de-
pendent variable re-evaluates itself the next time it is needed. It does this by
calling a function, whose address is stored locally within the variable, and wait-
ing for the return value. An executing evaluation function may, in turn, call

75

76 CHAPTER 11. BEHIND THE SCENES

upon other variables, some of which may turn out to be other invalid depen-
dents. This process may go on for a while, cascading throughout a vast network
of variables, until eventually the first evaluation function returns. In a sense,
dependent variables struggling to keep themselves valid is what Sage models are
all about. Finally, an implicit variable is one whose value is set by a nonlinear
equation solver on the basis of zeroing a real-valued function whose address is,
again, stored locally within the variable. Like independent variables, implicit
variables are real valued. The implicit-variable evaluation function is much like
a dependent-variable evaluation function, calling upon other variable values as
needed, possibly giving more grief to the dependent variables who are constantly
having to re-evaluate themselves. Collectively, the dependent and implicit vari-
ables form the outputs of a model component, although some are invisible to
the user.

11.2 Smart Models

As you may have surmised by now, models in Sage are just collections of smart
variables organized to exhibit some required behavior. But specific behaviors
pertaining to physical phenomena occur in the high-level cerebral cortex of a
model. Deep in the reptilian brain stem, common to all models, are a number
of fundamental behaviors.

At the lowest level of awareness, models maintain a number of data structures
which help them to manage their variables and any child models they might
have. Thus they are able on demand to load and store themselves, their variables
and their children to and from a disk file. They know how to invalidate any
of their dependent variables currently valid and which models are affected by
their non-dependent variables so they may ask them, in turn, to invalidate their
dependent variables when required. And they are able to interface with Sage’s
I/O routines, its mapping and optimization drivers and its nonlinear solver in
order to count, collect together or otherwise deal with variables that are either
inputs, outputs, mapped, optimized or solved.

11.3 Grids

At a slightly higher level of awareness, some models know how, when asked, to
deal with the various computational grids common to numerical analysis. There
is a split in the model evolutionary tree here with one branch knowing about
grids and the other not. The knowing branch is further divided according to
the type of grid it understands. Presently supported are one-dimensional spatial
grids, periodic one-dimensional time rings and two-dimensional space-time grids,
denoted respectively by Gx, Gt and Gxt. All grids maintain nodes of real-
valued variables (smart ones) at discrete spatial positions or times and support
the common operations on grids such as numerical differencing, integrating and
averaging. A periodic time ring is a grid where the nodes may be thought of as

11.3. GRIDS 77

equally spaced on the perimeter of a circle, so that there is no actual first or last
node, except as a computer-storage convenience. Time rings are appropriate for
modeling time-periodic phenomena.

11.3.1 Spatial Grids

Spatial grids are compatible with staggered-grid, also known as control-volume,
solution methods. That is, they may be thought of as containing an integer
number of control volumes or cells, with nodes falling at the boundaries and
centers of each cell, so the total number of nodes is always odd. They do spatial
differencing according to the central formula

∂f

∂x
(i) =

f(i+ 1) − f(i − 1)

2 dx
(11.1)

where i is the spatial index. For integration, spatial grids use a variation
of Euler’s rule, sampling only every other spatial index, at cell midpoints,
thereby guaranteeing a global conservation property with staggered-grid so-
lution schemes. This follows because when one integrates a term ∂f

∂x across a
computational domain there is a pair-wise cancellation of f values, except at
the two endpoints. In physical terms the global conservation property may be
stated as “what flows out of one computational cell enters the next”. The rea-
son higher order differentiation is not used is that it would destroy this global
conservation property, or complicate it greatly.

Spatial grids interpolate between neighboring solved values using Lagrange
polynomial interpolation. Staggered-grid solutions generally alternate between
solved and interpolated values. In the case of interpolation there is no global
conservation property to worry about so, in principle, the order of interpolation
can be as high as required. The current limit is set to cubic (third order) because
of concerns that higher order will only cause numerical trouble due to the ten-
dency of higher-order polynomials to produce wildly oscillating values between
tabulated values. The order of interpolation may be set in the Options|Model
Class dialog as either linear or cubic for those models using grids.

When possible, the neighboring solved values used in interpolation are dis-
tributed equally on either side of the interpolation point with the interpolation
point at the center. For example, linear interpolation amounts to the averaging
the values of the surrounding two solved variables.

f(i) =
f(i − 1) + f(i + 1)

2
(11.2)

Cubic interpolation involves the weighted average of four neighboring values.

f(i) = −0.0625f(i−3)+0.5625f(i−1)+0.5625f(i+1)−0.0625f(i+3) (11.3)

When neighboring values fall outside the computational domain they are shifted
toward one side or the other, as required. For example, linear interpolation at

78 CHAPTER 11. BEHIND THE SCENES

the negative and positive domain endpoints become

f(i) =
3

2
f(i+ 1) − 1

2
f(i+ 3) (11.4)

f(i) =
3

2
f(i− 1) − 1

2
f(i− 3) (11.5)

unless the computational domain contains only one cell, in which case nodes
i + 3 or i− 3 lie outside the computational domain and the interpolated value
is just the cell-center value.

In general, spatial interpolation is carried out according to the formula

f(xi) =

N∑

k=1

Akf(xp) (11.6)

where N is an even number corresponding to the number of points in the set of
neighboring solved points xp used for the interpolation. The neighboring points
xp are a set of consecutive staggered locations in the neighborhood of the point
of interpolation xi, with index p given by

p(k) = (i− 1) + 2(k − ki) (11.7)

ki is the offset (0 to N) of the point of interpolation relative to the xp. ki = 0
corresponds to the xp beginning at xi+1 (i.e. interpolating at the negative
endpoint), ki = N/2 corresponds to the xp distributed equally on either side of
xi (i.e. central interpolation) and ki = N corresponds to the xp ending at xi−1

(i.e. interpolating at the positive endpoint). The coefficients Ak are tabulated
depending on N and ki using a variation of Neville’s recursive algorithm, as
follows. Start with

Fl,0 = δk
l l = 1, . . . , N (11.8)

where δk
l is the Kronecker delta function (0 if l 6= k, 1 if l = k). Then compute

Fl,m =
DlFl+1,m−1 −Dl+mFl,m−1

2m

m = 1, . . . , N−1
l = 1, . . . , N−m (11.9)

where the Dl are the offsets of the lth p index relative to i.

Dl = 2(ki − l) + 1 (11.10)

and finally
Ak = F1,N−1 (11.11)

This requires some explanation. Neville’s recursive algorithm (see section 3.1
of [50]) obtains the unique N − 1 order polynomial approximation at an inter-
polation point xi to the function with values fp at the points xp. If the point
xi and the xp always remain the same, the interpolation may be represented in
the form of equation (11.6) where the Ak values need to be calculated only once
and then saved for subsequent use. The way to calculate the Ak’s is to trace

11.3. GRIDS 79

the contribution of each fp component through the interpolation process. This
is easily done by applying the Neville algorithm with all fp values zero except
for fp = 1 for p corresponding to the index k. This is exactly what the above
algorithm does by interpolating the set of basis functions δk

l . The one confusing
point is that for purposes of the algorithm the tabulated xp and fp points are
indexed sequentially using what is denoted above by the l index, as xp(l) and
fp(l) for l = 1, . . .N .

11.3.2 Time Grids

Time grids, or rings in Sage parlance, assume a periodic solution. They do
time differencing using a scheme with its roots in the three-point backward
differencing method attributed to Richtmyer and Morton [52]. Letting j denote
the time index, this method is

∂f

∂t
(j) =

3f(j) − 4f(j − 1) + f(j − 2)

2 dt
(11.12)

While this is a starting point for the method in Sage, it is not the actual method
used. The method was originally improved by re-deriving it to “get the right
answer for” or annihilate periodic sinusoidal functions rather than the first few
terms of a polynomial, as the method was originally conceived. This was merely
a matter of replacing the integer coefficients in the above formula with coeffi-
cients β0, β1, β2 solved to annihilate test functions f = 1, f = sin and f = cos.
The result was a three-point backward differencing formula that served Sage
well for several years.

But the problem was that although the method gave exact results for time-
derivatives of purely sinusoidal functions, it introduced progressively increasing
errors for higher harmonics, depending on the number of nodes in the grid.
So the method was extended to annihilate as many harmonics as possible, by
increasing the number of backward sampling points, according to the formula

∂f

∂t
(j) =

2M∑

k=0

βkf(j − k)) (11.13)

where M is the order of the highest harmonic annihilated — in practice limited
to (N−1)div 2, where N is the number of nodes in the grid. (“div” is the divide
operator that rounds down to the next lowest integer) With this value of M ,
all available harmonics are annihilated when N is odd and all but the highest
when N is even.

By requiring that formula (11.13) hold for the first M Fourier-series basis
functions, it is straight-forward to show that the required βk coefficients must

80 CHAPTER 11. BEHIND THE SCENES

solve the following linear equation system

sin ∆τ sin 2∆τ . . . sin 2M∆τ
1 − cos ∆τ 1 − cos 2∆τ . . . 1 − cos 2M∆τ

sin 2∆τ sin 4∆τ . . . sin 4M∆τ
1 − cos 2∆τ 1 − cos 4∆τ . . . 1 − cos 4M∆τ

...
sinM∆τ sin 2M∆τ . . . sin 2M2∆τ

1 − cosM∆τ 1 − cos 2M∆τ . . . 1 − cos 2M2∆τ

β1

β2

β3

β4

...
β2M−1

β2M

=

−1
0

−2
0
...

−M
0

(11.14)
with ∆τ the dimensionless time step

∆τ =
2π

N
(11.15)

and the zeroth coefficient computed explicitly as

β0 = −
2M∑

k=1

βk (11.16)

once those for k ≥ 1 are available. This implicit formulation is no problem
computationally. It just means that Sage must invoke a linear solver object to
compute the βk’s, rather than evaluate some, perhaps, complicated expressions
involving sine and cosine functions. This is required only once upon creation of
the computational grid.

For integration, time grids use Euler’s rule without modification — sampling
and giving equal weight to every time index. This is the only possibility, since
logically time grids have no beginning or end indices, or any other basis, to
distinguish one node from another for weighting purposes.

11.4 Connecting Things Together

So just what it does it mean to connect two model components together across
a boundary? And how is it that information passes between the two compo-
nents? Whenever you make a connection there is actually a third invisible object
created, a boundary connector. This object is a close relative of a model compo-
nent in that it is a collection of smart variables organized for a specific behavior.
The behavior in this case is to provide a common boundary-value variable (or
variables) to be used by the adjoining models as part of their solution and to
receive from those models, in exchange, sufficient information to establish the
validity of the boundary variable. This information generally takes the form of
some quantity that must be conserved across the connection.

Take steady heat flow for example. We might imagine two thin heat-conducting
rods connected in series between an isothermal source and an isothermal sink.
Each rod is a separate model component and the connection in the middle is
the current point of interest. The physical principle governing heat flow is this:

11.4. CONNECTING THINGS TOGETHER 81

Heat flows across the connection until the rod endpoint temperatures are equal.
Simple. The Sage equivalent goes like this: Heat flow is an implicit variable
managed by a boundary-connector object in the middle. Each rod maintains
its own independent solution, producing an axial temperature distribution as
a function of connector heat flow. When the user connects the two rod ends
together, each rod receives a pointer to the connector object which it can call
upon to read the current value of heat flow. Meanwhile, the connector ob-
ject receives pointers to the appropriate endpoint-temperature variables within
both rod models. It evaluates the difference of these two temperatures as the
to-be-zeroed function component associated its implicit heat flow variable. A
nonlinear solver object in the background sees all this as just another equation
to be solved in its equation system, and iterates the value of heat flow until
temperature continuity is achieved. This is essentially how most Sage connector
objects work.

As a matter of notational convenience, we could denote the previous heat-
flow boundary-connector example as Q(T) where Q represents the implicit heat-
flow variable in the connector and T represents endpoint temperatures in the
adjoining rods, continuity of which determines Q. Using this notation we can
quickly summarize the basic types of boundary connectors available in Sage:

F (∆X) — Force determined by positional displacement continuity.

P (∆V) — Pressure determined by volumetric displacement continuity.

T (θ) — Torque determined by rotation angle continuity.

Q(T) — Heat flow determined by temperature continuity.

ρ(P) — Density determined by pressure continuity.

ṁ(s) — Gas mass flow rate determined by state-variable continuity. Actually,
ṁ symbolizes combined mass flow rate, mass-density jump and energy-
density jump, while s symbolizes, momentum flow, energy flow and a
momentum equation.

I(V) — Electrical current determined by voltage continuity.

φ(Ψ) — magnetic flux determined by magnetic potential continuity.

R(B) — Thermal radiation flow determined by radiosity continuity (combined
emitted plus reflected radiation per unit area of surfaces exchanging radi-
ation).

Not very many connector types, really. However, as with models, connectors
are further subdivided according to the numerical representation of the solved
variables within themselves and in the models to be joined. For each basic
type there may be variations for steady-valued solutions, complex or phasor
solutions and the various types of grid solutions. But the basic types of boundary
connectors are those listed.

82 CHAPTER 11. BEHIND THE SCENES

11.5 Solving

When you elect to solve the model hierarchy you have specified, you are really
calling into play another software object: a nonlinear solver. The purpose of
this object is to orchestrate the iterative solution of a large system of nonlin-
ear equations — one equation (setting the evaluation function to zero) for each
implicit variable in the model hierarchy. Although often numbering in the hun-
dreds, these implicit variables are generally invisible to the user. They come
about automatically, as computational grid variables and the like.

The nonlinear solver does its job by solving a sequence of linear approxi-
mations to the nonlinear equations. The coefficients of the linearized equations
result from numerical partial derivatives of the evaluation functions taken with
respect to the model’s implicit variables. The result is a sparse matrix, solved
with a special sparse-matrix solver. The solution becomes a search direction
along which to seek the nonlinear solution. This process repeats until the non-
linear model equations are all satisfied within some prescribed tolerance.

Mathematically, each iteration takes the form of solving the equation

J∆V = −F (11.17)

for the step ∆V , where J is the Jacobian (partial-derivative) matrix and F is
the to-be-zeroed function vector. This is Newton’s method. While Newton’s
method works well for nearly linear system functions, it can fail to converge for
nonlinear ones, especially when the starting value for V is far from the final
solution. In particular, discontinuities of implicit-variable initial values across
connections have been observed to be a chief cause of non-convergence in Sage.
The implicit function components corresponding to these discontinuities are of
the form F = V+ − V−, where V+ and V− are the implicit variable values on
either side of the connection. Newton’s method tries to zero the discontinuity
in one step, which tends to destabilize the solution. It is not too difficult to
avoid this problem by relaxing variable discontinuities more slowly, which is
what Sage’s nonlinear solver does.

The idea is to replace F on the right-hand side of (11.17) by ∆F , the desired
change in F . For most components, ∆Fj is just −Fj , meaning that Fj is
allowed to step all the way to zero. But for key components (those of the
form F = V+ − V−), ∆Fj is some smaller amount — small enough to avoid
destabilizing the solution. The maximum allowable ∆Fj is something that is
left to smart variables to decide.

11.6 Optimizing

Likewise, when you elect to optimize your model, you are calling into play yet an-
other software object: an optimization driver. The nonlinear optimizer in Sage
employs a variation of Powell’s sequential-quadratic-programming method [49]
which locally approximates the nonlinear optimization problem by a succession
of quadratic sub-problems (quadratic objective function and linear constraints)

11.7. DELPHI SPOKEN HERE 83

each of which is readily solved. The idea is that by doing this often enough
and searching along the direction from where you are to where the quadratic
minimizer lies, you will eventually converge to the actual nonlinear minimizer —
or rather a minimizer if there happens to be more than one. Powell’s algorithm
builds up its quadratic programming problems as it steps along by accumulating
second derivative information about the objective function and constraints. It
then turns to a separate quadratic optimizer for the sub-problem solution — in
the Sage implementation, a convex method suited to Powell’s method, reported
by Goldfarb and Idnani [27]. Complicated as this may seem, it really does work.

11.7 Delphi Spoken Here

Sage is a Delphi application (Embarcadero) running under Microsoft Windows.
So why not C++, some might ask. Partly for continuity’s sake, since the solving
and optimization engines of Sage were originally written in Pascal (the underly-
ing language of Delphi). But also, Delphi’s visual component library has taken
much of the drudgery out of programming the Windows interface, a consider-
able part of Sage. And the inherent structure and readability of the underlying
Pascal language seem to make for more reliable, maintainable code.

At any rate, the object-oriented philosophy pervades Sage. Almost every-
thing is a class object of one sort or another. This makes some things easier
than before, some things harder. Easier are creating and maintaining reliable
models for complicated phenomena. A new model can inherit its basic be-
haviors from an earlier model then add new behaviors as needed. Thus, it is
straight-forward to create from a generic gas domain, three variations each with
its own turbulence-transition model. Debugging is easier too, because it is a
snap to isolate and test model components one at a time. Harder is realizing
global connectivity from a bunch of separate objects. Seemingly little things like
summing masses of different components or imposing dimensional stack-up con-
straints can be vexing problems in the object-oriented world. As programmed,
objects are self contained entities that know nothing of the larger context of the
model they find themselves in. Sage’s answer to this is to provide such things
as connector objects, user defined variables and recastable inputs which were
expensive in programmer time to conceive of and implement, but allow the user
to play an active role in defining high-level model structure.

84 CHAPTER 11. BEHIND THE SCENES

Part III

SCFusion Model Classes

85

Chapter 12

Overview and Tutorial

The SCFusion model class (stirling-cycle fusion) allows you to model a wide
variety of steady or time-periodic machines based on the stirling or related
thermodynamic cycles. A SCFusion model is built up from component parts of
your choosing representing thermal solids, gas domains, canisters, heat exchang-
ers, piston-cylinder pairs, and so forth. The parts function as a whole by virtue
of their interconnections — heat and gas flows through appropriate boundaries,
forces acting on appropriate attachment points and pressures on appropriate
area faces. Add to this the possibility for user-defined variables and custom
optimization specifications and you can see that the possible combinations are
endless.

Sample Models The SCFusion installation includes a large number sample
files to get you started (in the Apps\SCFusion\Samples sub-directory under the
installation directory). These are accessible from Sage with the Help|Sample
Models menu item. There may well be a sample file very close to the machine
you are interested in. All you have to do is save the sample model with another
name (File|Save As) and edit it to your liking. Each sample file also comes with
documentation in a companion file in Adobe PDF format with the same name
but file extension pdf. These are installed in the same directory as the sample
files.

Tutorial A good way to get acquainted with Sage is to start with the simple
spring-mass-damper resonant system model found in the Tutorial subfolder.
Open a model with Sage, its companion documentation file with a PDF reader,
and follow along.

87

88 CHAPTER 12. OVERVIEW AND TUTORIAL

Chapter 13

Boundary Connections

SCFusion model components communicate with each other using the follow-
ing boundary connections. You may only connect together like connectors of
opposite sign (opposite-facing arrows).

13.1 Force Connections

Fphsr or FGt

These represent either phasor or time ring forces acting on points of attachment.
The points of attachment will share the same motion when connected together.
Force connections are used primarily for connecting springs and dampers to
moving parts.

13.2 Pressure Connections

Pphsr or PGt

These represent either phasor or time ring pressure variations acting on area
faces. The area faces share the same volume displacement when connected
together. They are used primarily for connecting pistons and the like to gas
domains.

13.3 Heat Flow Connections

Qstdy, QGt, QGx or QGxt

These represent either steady, time-grid, spatial grid, or space-time grid heat
flows acting on thermal boundaries. Boundaries share the same temperature
when connected together. Steady heat flows are useful for time-averaged par-
asitic conduction losses. Spatial grid heat flows are useful for steady but dis-

89

90 CHAPTER 13. BOUNDARY CONNECTIONS

tributed heat flows, such as occurs two dimensional fins. Space-time heat flows
are for connecting thermal solids to gas domains.

13.4 Gas Flow Connections

ṁGt

These represent the flow of gas from one gas domain inlet into another. Two
inlets conserve mass flow rate, energy and momentum when connected together.

13.5 Density Connections

ρstdy

This represents the common mass density between a gas domain and a pressure
reservoir. The two share the same mean pressure when connected together.
Density connections are used to connect the SCFusion working gas to a fixed-
pressure source in order to establish charge pressure. This connection type is
generally used only once per SCFusion model instance, but its use is critically
important.

13.6 Electrical Current Connections

IGt

These represent the flow of electrical current from one electrical component into
another. Electrical boundaries share the same voltage when connected together.

13.7 Magnetic Flux Connections

φGt

These represent the flow of magnetic flux from one magnetic component into an-
other. Magnetic boundaries share the same magnetic potential when connected
together.

Chapter 14

Entropy Generation

Many SCfusion model components involve irreversible entropy-generating pro-
cesses and keep tabs of entropy generation in terms available energy output
variables. Available energy or availability for short is just entropy multiplied by
the negative of ambient temperature T0, which is really just input Tnorm in the
SCFusion root model component. A loss in availability equates to a decrease
(in an engine) or increase (in a cooler) of PV power.

14.1 Lost Available Energy

The concept of availability arises from the net mechanical work Wr available
from a reversible heat engine with a net inflow of heat Q (positive) at a tem-
perature T and outflow Q0 (negative) at a sink temperature T0:

Wr = Q+Q0 = Q(1 − T0/T) (14.1)

In contrast, an irreversible-cycle might produce work Wi < Wr obtained from
the same input Q. According to the first law of thermodynamics, and in terms
of heat rejected Q∗

0

Wi = Q+Q∗
0 (14.2)

where Q∗
0 is no longer equal to −QT0/T . The lost available energy is just

Wr −Wi = −QT0/T −Q∗
0 = −T0(Q/T +Q∗

0/T0) (14.3)

Evidently, this is just −T0 times the net entropy increase of the surrounding
universe as a result of the heat flows into and out-of the system. This leads us
to generally characterize all internal entropy generations in the SCFusion model
class in terms of losses in availability according to the definition

Availability Loss = −T0 × Entropy Generation (14.4)

The value of the availability-loss concept is that it allows us to think about
entropy generation in terms of the more concrete notion of lost mechanical
work.

91

92 CHAPTER 14. ENTROPY GENERATION

It is important to note that availability losses vary with the sink temper-
ature T0, which is given by input variable Tnorm in the SCFusion root model
component. Therefore, availability losses really equate to lost PV powers only
when all points of heat rejection are indeed at the temperature Tnorm. See
reference [5] for a standard treatment of available-energy accounting.

14.2 Second-Law Balance

Entropy generation (or available energy loss) may be measured in one of two
ways: by entropy flow across the external boundaries of a SCFusion model
instance or by entropy generated by internal processes. The previous example
accounts for entropy generation in the first way. The surrounding universe
suffers a loss of available energy due to heat flow through the boundaries of
a SCFusion machine. When we get specific about individual SCFusion model
components we will also be able to account for entropy generation in the second
way — by tallying up the individual entropy generations in all internal processes.

In principle, the two methods of accounting should give the same answer.
But often they do not. This is because there is no conservation-of-entropy-
generation principle built into the SCFusion model components, as there is
for conservation of energy. Discrepancies arise, usually attributable to numer-
ical artifacts in the computational solution. These include finite-differencing
truncation errors, for both spatial and temporal partial derivatives, as well
as interpolation errors needed to obtain solution variables at off-solution grid
points. So model components that tally available energy losses generally have
an available-energy discrepancy output, as well, that monitors the difference
between external-boundary and internal-process accounting.

It is tempting to look at the relative magnitude of the availability accounting
discrepancy as a measure of the solution accuracy. Large discrepancies may be
produced by difficult to model features such as heat exchangers with highly
nonlinear axial temperature distributions, large pressure ratios, etc. In such
cases it is usually helpful to refine the computational grid — that is, add more
time nodes (NTnode) or more control volumes (NCell).

Chapter 15

SCFusion Root Component

The highest level SCFusion model component, and the only model component
you see when you create a new model instance, is the root model. Its purpose is
to define a few global variables and some normalization constants as a framework
for all its children which you create, or someone created before, by selecting from
the component palette. Its variables are:

NTnode : (dimensionless) The number of time nodes in the computational grids
of all underlying model components having such grids. NTnode is impor-
tant because it dramatically affects the solution time and memory require-
ments, not to mention solution accuracy. Treat it gingerly by making only
gradual, small changes. Changing this variable re-creates all time grids in
the model and initializes solution values by interpolating between solved
values of the previous grid.

You can get an idea if the solution grid is too coarse (NTnode too small) by
inspecting the various Fourier series output variables produced by individ-
ual model components. If the highest harmonic is not small compared to
the lower harmonics then you might want to increase NTnode to improve
solution accuracy. You should also increase it to an odd number because
NTnode must be odd to resolve the mean value plus both components
of all harmonics available in the grid. When NTnode is even the highest
harmonic is not fully determined. This leads to finite differencing errors
in addition to the inaccuracy produced by not resolving all the significant
harmonics in the solution.

It is a good idea to always set NTnode to an odd value, although even
values are allowed by Sage. When NTnode is odd the highest harmonic
available in the grid is (NTnode - 1) / 2.

Lnorm : (real, m) Length scale normalization constant. The value of this input
may make the difference between a solution that converges and one that
doesn’t. As a rule of thumb, Lnorm should be, roughly, the cube root of the
largest swept volume amplitude in the underlying SCFusion model. Some

93

94 CHAPTER 15. SCFUSION ROOT COMPONENT

fiddling around may be required to achieve optimal solution convergence
rate. Keep in mind that a small change may have a big effect, since many
quantities are normalized by the cube of Lnorm.

FreqNorm : (real, Hz) Frequency scale normalization constant. This one is not
as critical as Lnorm. Generally, set it to the actual operating frequency
Freq. It is a separate constant because Freq may change during optimiza-
tion.

Pnorm : (real, Pa) Pressure scale normalization constant. Again, not as critical
as Lnorm, but important because it establishes the initial pressure in all
underlying gas domains. It should be close to the charge pressure Pcharge
in the pressure-source component. Otherwise, the pressure solutions in
gas domains may go unstable.

Tnorm : (real, K) Temperature scale normalization constant. Usually the am-
bient temperature, or about 300 K. Keep in mind that it scales available
energy outputs in certain model components (see chapter 14).

Qnorm : (real, W) Heat flow normalization constant. Generally, set it to the
magnitude of the total heat rejection expected for the SCFusion model.
Increasing Qnorm can sometimes help a solution converge when the con-
vergence error is hovering near the target error and the problem is due to
surface heat flux stiffness (small temperature fluctuation producing large
heat flux fluctuation) as can happen, for example, with a particularly
effective regenerator matrix.

Freq : (real, Hz) The actual operating frequency for the SCFusion machine.
Although it is set as an input, it may be optimized to satisfy an objective
function or constraints.

Omega : (real, radians/s) A convenience output that converts Freq to angular
frequency by multiplying by 2π.

Gas : (enumerated) The working gas type (see below).

15.1 Working Gas

The gas variable is deceptively simple. It is an enumerated-type variable that
selects the working gas from a list of choices. Each available gas is itself a
software object with sufficient data encapsulated within it to know its important
properties.

The values of the defining properties appear after the enumerated identifier
in display windows and the output listing, provided the Display Options selec-
tion is ”Full Detail” in the Sage Options dialog (Options | Sage menu item. The
gas choices come from a default database file gasSCF.dta, or a data base file
customized by you. (see chapter 28)

15.1. WORKING GAS 95

An instance of a gas object has methods (subroutines) that can be called
upon to return various properties, as functions of temperature, or various state
variables, as functions of other state variables. The underlying gas-domain
model components call upon these methods when needed. Sometimes, this
requires only cubic-spline interpolation using the appropriate set of data pairs.
Sometimes, it gets a little more complicated.

15.1.1 Ideal Gas Physics

As the name implies, ideal-gas objects presume the ideal gas equation of state

Pv = RT (15.1)

The defining properties for an ideal gas are:

T0 : (K) Representative temperature T0.

Rgas : (J/(kg K)) Gas constant R.

Specific heat : (J/(kg K)) A cubic spline variable with temperature vs specific
heat (T, cp(T)) data pairs covering a broad range of temperatures.

Viscosity : (kg/(m s)) A cubic spline variable with temperature vs viscosity
(T, µ(T)) data pairs.

Conductivity : (W/(m K)) A cubic spline variable with temperature vs conduc-
tivity (T, k(T)) data pairs.

Note that the cubic-spline interpolated values for cp, µ and k do not include any
pressure dependence. The default ideal gas objects are based on atmospheric-
pressure data. These properties are only weakly dependent on pressure provided
the fluid state is well above the critical temperature or well below the critical
pressure.

Available property methods are presented below in functional notation. For
example, cp(T) is the heading for the method that returns cp as a function of
T .

Specific Heat Ratio γ

This is actually a data field, not a method, initialized as

γ =
1

1 − R/cp
(15.2)

where cp is the zero-pressure limit at reference temperature T0. This is the
only reason for the existence of T0 as a data field. It is important that γ be a
constant, rather than a function of T , because internal energy and entropy both
depend on γ (cv = R/(γ − 1)) as does sonic velocity.

96 CHAPTER 15. SCFUSION ROOT COMPONENT

Specific Heat cp(T)

Zero-pressure cp limit, that is. This is just a matter of cubic-spline interpolation
from the specific-heat data pairs.

Prandtl Number Pr(T)

Calculated as a function of temperature as Pr = cpµ/k.

Viscosity µ(T)

Molecular viscosity interpolated from viscosity-temperature data pairs.

Conductivity k(T)

Molecular conductivity interpolated from conductivity-temperature data pairs.

Sonic Velocity us(T)

Returns the isentropic, small amplitude, phase velocity of an acoustical wave

us =
√

γRT (15.3)

Specific Volume v(T, P)

Returns specific volume 1/ρ, defined as

v =
RT

P
(15.4)

Compressibility Z(ρ, T)

Returns compressibility, defined as

z =
P

ρRT
(15.5)

which equals one, by definition, for an ideal gas.

Temperature T (ρ, ρe, u)

Returns temperature as function of mass density, volume-specific energy density
and velocity

T =
γ − 1

R

(
(ρe)/ρ− u2/2

)
(15.6)

Pressure P (ρ, T)

Returns pressure as function of mass density and temperature

P = ρRT (15.7)

15.1. WORKING GAS 97

Energy Density ρe(ρ, T, u)

Returns volume-specific energy density as function of mass density, temperature
and velocity

ρe = ρ
(
R/(γ − 1)T + u2/2

)
(15.8)

where R/(γ − 1) = cv.

Entropy s(ρ, T)

Returns mass-specific entropy as function of mass density and temperature

s = R (ln(T)/(γ − 1) + ln(1/ρ)) (15.9)

Equation of State Error Z̃(ρ, T)

Returns zero because the ideal equation of state relative error is zero by as-
sumption.

15.1.2 Tabular Gas Physics

Tabular gas objects are instances of Sage’s TBspline3Gas class, designed for use
when the working fluid state may fall in or near the two-phase state within
the model scope (low-temperature J-T, or GM crycoolers). The “BSpline”
in the name refers to bicubic-spline interpolation, which is a way of fitting a
piecewise-defined cubic polynomial to two-dimensional data (specific volume v
and temperature T being the two dimension) so that first and second derivatives
are continuous throughout the interpolation domain (see chapter 3 of reference
[50]).

The TBspline3Gas class descends from preceding classes TBspline2Gas and
TBsplineGas introduced in earlier versions of Sage. These preceding classes are
still supported for file backward compatibility but are no longer recommended
of Sage version 13. See chapter 29.

TBSpline3 Gases define specific heat cp, viscosity µ and conductivity k us-
ing (v, T) interpolation tables rather than T -only interpolation pairs. Previous
ideal-gas cubic-spline data-pairs (T, Cp), (T, µ) and (T, k) are still present but
are now all understood as zero-pressure limits. They are automatically gener-
ated on input from the high-v column of the corresponding data table without
any additional user input required (in the SCFProp.exe property management
software). Previously only Cp was a zero-pressure limit, the other two properties
were tabulated for a representative pressure. The only reason cp is included as a
(v, T) table is for the calculation of Prandtl number used in certain heat-transfer
formulations.

In support of modeling within the two-phase region TBSpline3Gases contain
two new cubic spline variables ρd(T) and ρb(T), representing the densities of
the vapor at the dew point and liquid at the bubble point (see below).

A TBSpline3Gas is defined by the following values:

98 CHAPTER 15. SCFUSION ROOT COMPONENT

T0 : (K) Representative temperature T0. A vestige inherited from the original
ideal gas class, used only as the temperature for calculating the zero-
pressure ratio of specific heats γ = cp/cv.

Z(v, T) : (dimensionless) Rectangular table of Z(vj , Tk) values where Z =
Pv/RT is compressibility, v is specific volume and T is temperature. The
first (left) column contains the Tk values and the first (top) row the vj

values. The corresponding Z values lie in the body of the table.

ε(v, T) : (J/kg) Rectangular table of mass-specific internal energy values ε(vj , Tk),
structurally similar to the Z(vj , Tk) table.

Cp(v, T) : (J/(kg K)) Rectangular table of constant-pressure specific heat val-
ues cp(vj , Tk), structurally similar to the Z(vj , Tk) table.

Mu(v, T) : (kg/(m s)) Rectangular table of viscosity values µ(vj , Tk), struc-
turally similar to the Z(vj , Tk) table.

K(v, T) : (W/(m K)) Rectangular table of thermal conductivity values k(vj , Tk),
structurally similar to the Z(vj , Tk) table.

ρd(T) : (kg/m3) Cubic spline data pairs of dew-point density values (Tk, ρd(Tk)),
with temperature values covering the lower range of the other tables up
to critical temperature Tc. Usage within the TBSpline3Gas class requires
that the final data pair be (Tc, ρc), where ρc is the critical density. The
dew-point density ρd(T) is the vapor density where liquid condensate first
appears for vapor compressed at a fixed temperature T .

ρb(T) : (kg/m3) Cubic spline data pairs of bubble-point density values (Tk, ρb(Tk)),
with temperature data requirements same as for the ρd(T) data pairs. The
bubble-point density ρb(T) is the liquid density where vapor bubbles first
appear for liquid expanded at fixed temperature T).

15.1.3 Auxiliary Property Tables

The original TBSplineGas class derived auxiliary cubic-spline data tables nec-
essary for evaluating the complete list of referenceable properties below. These
data tables were volume-specific internal energy ε(vj , Tk) and mass-specific en-
tropy s(vj , Tk), both derived from the state table Z(vj , Tk). TBSpline3Gas now
derives only the entropy table this way because numerical errors in path inte-
grations led to discrepancies in the derived internal energy data compared to
refprop values. Be that as it may, the methods for deriving both internal
energy and entropy from Z data are documented below for reference.

Internal Energy According to reference [56] (equation (232), p. 285), the
differential of mass-specific internal energy is

dε = cvdT +

[

T

(
∂P

∂T

)

v

− P

]

dv (15.10)

15.1. WORKING GAS 99

In terms of compressibility Z, one can substitute RρTZ for P andRρ
[
Z + T

(
∂Z
∂T

)

v

]

for
(

∂P
∂T

)

v
so that the internal energy differential becomes

dε = cvdT +

[

RρT 2

(
∂Z

∂T

)

v

]

dv (15.11)

The approach TBspline2Gas used to build a table of ε values was as follows:
First build the vmax row of the table by temporarily assigning the corner

point ε(vmax, Tmin) the value zero, then calculating the remaining points in the
row by integrating (15.11) with respect to T only, from one point to the next.
Assuming ideal-gas conditions at vmax, it is valid to substitute the zero-pressure
limit cv0(T) for cv(T), then cp0(T) − R for cv0(T), since cv0(T) is not directly
tabulated. cp0(T), on the other hand (the zero-pressure limit of cp), is available
as a cubic-spline data object.

Then, in a similar point-by-point process, complete the columns of the table
by integrating equation (15.11) with respect to v only, starting at each of the
(vmax, Tk) points already calculated and using bicubic-spline routines operating
on the Z table to calculate the value of

(
∂Z
∂T

)

v
.

Entropy The differential of mass-specific entropy is

ds =
dε

T
+
P

T
dv (15.12)

again according to reference [56] (equation (103), p. 102). By substituting
(

∂ε
∂T

)

v
dT +

(
∂ε
∂v

)

T
dv for dε this becomes

ds = cv
dT

T
+

[(
∂ε

∂v

)

T

+ P

]
dv

T
(15.13)

As before, the vmax row of the table is produced by integrating equation
(15.13) with respect to T only, point-by-point, starting with a temporary value
of zero for s(vmax, Tmin), and substituting cp0(T) − R for cv(T). Then the
columns of the table are completed by integrating equation (15.13) with respect
to v only, starting at each of the (vmax, Tk) points just calculated.

The process so far does not establish an appropriate constant of integration.
Usually this is done to give a particular reference value for entropy at some state
point (v0, T0). In principle, this is not a problem since the equations in Sage’s
gas domains are affected only by changes in entropy, not absolute values. But it
may be more of a problem with human perception. So an integration-constant
offset is added to the entire table so that the minimum entropy value is some
convenient value, such as gas constant R.

Dependant Properties All of the gas properties Sage requires can be cal-
culated in terms of the above Z(v, T), ε(v, T) and s(v, T) tables. The property
methods that perform these calculations have the same names as those for ideal
gases, except the internal calculation details are entirely different. Interpolation

100 CHAPTER 15. SCFUSION ROOT COMPONENT

replaces algebraic calculation and the specific volume v and mass-specific inter-
nal energy ε used in the state-table formulation are converted back and forth
into Sage variables density ρ and volume-specific total energy ρe.

Specific Volume v(T, P)

Finding v(T, P) is a matter of using Newton’s method to iteratively solve

F (v) = Pin − P (v, T) = 0 (15.14)

Where Pin is the given pressure input and P (v, T) is the pressure interpolated
from the table of Z values. Required in the process is ∂P

∂v , which is supplied by
bicubic spline routines operating on the Z table.

Newton’s method requires a good starting value for v, otherwise it may
not converge. This starting value comes from a binary search in the Z table
to find the v-indices that bracket Pin (the indices jlo and jhi = jlo + 1 so
that P (vjlo

, T) ≥ Pin ≥ P (vjhi
, T)) followed by a linear interpolation between

the bracketing values. The bracketing technique is reliable because P always
decreases with increasing v for all gases. Pressure may remain constant during
the liquid to vapor transition but it never increases.

Compressibility Z(ρ, T)

This is directly available by interpolation in the Z table as Z(1/ρ, T).

Temperature T (ρ, ρe, u)

Sage uses temperature in the solution process so this is a critical method. The
first step is to convert volume-specific total energy ρe to mass-specific internal
energy ε using

ε = (ρe)/ρ− u2/2 (15.15)

then finding T (ρ, ε) is once again a matter of using Newton’s method, this time
to iteratively solve

F (T) = εin − ε(1/ρ, T) (15.16)

Where εin is the given energy input and ε(1/ρ, T) is the energy interpolated
from the table of ε values. Required in the process is ∂ε

∂T
, which is supplied by

bicubic spline routines operating on the ε table.
The initial guess at T comes from a binary search in the ε table to find the

T -indices that bracket εin (similar to above) followed by a linear interpolation
between the bracketing values. The bracketing technique is reliable because ε
always increases with increasing T for all gases.

Pressure P (ρ, T)

This is directly available by interpolation in the Z table as

P = Z(1/ρ, T)RρT (15.17)

15.1. WORKING GAS 101

Energy Density ρe(ρ, T, u)

This is directly available by interpolation in the ε table as

ρe = ρ(ε(1/ρ, T) + u2/2) (15.18)

Entropy s(ρ, T)

This is directly available by interpolation in the s table.

Equation of State Error Z̃(ρ, T)

This could be based on some measure of error in the actual tabulated values of
Z(vj , Tk) as well as some estimate of the cubic spline interpolation error. But

it is not worth the bother since Z̃ is required only for an output variable in the
Sage listing. So Z̃ is presumed zero until further notice.

15.1.4 Critical Point Meaning

For low-temperature cooler modeling and in the TBSpline3Gas framework the
boundary of the two-phase region is of fundamental importance. That boundary
is defined by the bubble-point and dew-point curves which when plotted on
a T -v diagram meet at the top at a so-called critical-condensation point, or
criconden point for short. For a pure fluid the criconden point is the same
as the thermodynamic critical point defined by the isotherm Tc in a P -v plot
where there is an inflection point, i.e. where (dP/dv)Tc

= 0 and (d2P/dv2)Tc
=

0. But for a mixture the criconden point may differ significantly from the
thermodynamic critical point as illustrated in figure 15.1 for a 50-50 mixture of
methane and butane.

For the above reason all critical values in the context of a TBSpline3Gas
refer to the values at the criconden point. In particular the critical temperature
Tc is the temperature known to chemical engineers as the cricodentherm.

15.1.5 Vapor Quality

It is sometimes useful to know the vapor quality (vapor mass fraction) for fluid
in the two-phase region. For a given quantity of fluid containing vapor mass mv

and liquid mass ml , the quality is defined as

X ≡ mv

mv +ml
(15.19)

The total volume occupied by the two states is the sum mv/ρv +ml/ρl, where
ρv and ρl are the vapor and liquid densities. This same total volume may also
be represented in terms of a bulk density ρ as (mv +ml)/ρ. Equating these two
representations of volume, dividing through by mv + ml and using the above

102 CHAPTER 15. SCFUSION ROOT COMPONENT

Figure 15.1: refprop produced T -v plot for a 50-50 mixture of methane and
butane showing the critical-condensation point separate from the thermody-
namic critical point. The critical-condensation point theoretically lies at the
intersection of the bubble and dew-point curves although the two curves do not
quite meet at the top in refprop.

definition of quality gives an equivalent definition of quality in terms of the three
densities

X ≡ 1/ρ− 1/ρl

1/ρv − 1/ρl
(15.20)

However, TBSpline3Gases do not separately tabulate the vapor and liquid den-
sities ρv and ρl (as a function of v, T) so they define instead a pseudo quality
in terms of dew-point and bubble-point densities ρd and ρb as

Q ≡ 1/ρ− 1/ρb

1/ρd − 1/ρb
≡ v − vb

vd − vb
(15.21)

For pure fluids Q and X are the same thing because the equilibrium pressure
remains constant along an isotherm so ρv and ρl are always the same as ρd and
ρb. In mixtures the pressure varies so Q and X are not quite the same. But Q
is a reasonable approximation to the true vapor quality for many purposes and
approaches the correct values of Q = 0 as ρ→ ρb and Q = 1 as ρ→ ρd.

15.1.6 Transport Property Encoding in Two-Phase Re-
gion

In the two-phase region the values of transport properties cp, µ and k in the in-
terpolation tables are not the bulk values (mass weighted liquid/vapor average)
as they are for the thermal properties Z and ε. Rather the TBSpline3Gas class

15.1. WORKING GAS 103

stores separate liquid and vapor phase values in a special format so that they
may be recovered individually. TBSpline3Gases override the inherited transport
property evaluation functions to decode the vapor values within the two-phase
region and define new functions to decode the liquid values. In doing so the
transport properties for the separate liquid and gas phases are available for
heat transfer and flow resistance calculations.

Essentially, the property values for the liquid phase are stored between the
bubble-point and critical specific volumes vb and vc and values for the vapor
phase between the critical and dew-point specific volumes vc and vd, for each
temperature Tk. To be more precise it is useful to normalize the specific volume
range between vb and vd to the range 0 to 1 using the function Q(v) defined
by equation 15.21. The value F stored in the two-phase region of the property
table is either the liquid value FL or vapor value FV according to the following
formula in which F , FL and FV are understood to be functions of Q:

F (Q) =

FL

(
Q
Qc

)

if Q < Qc

FV

(
Q−Qc

1−Qc

)

if Q > Qc

(15.22)

where Qc is the pseudo-quality evaluated at the critical specific volume

Qc ≡ vc − vb

vd − vb
(15.23)

For any sub-critical temperature vc is always somewhere between vb and vd so
Qc always lies between 0 and 1. As tabulated above the property value F is
continuous across the bubble line (F (0) = FL(0)) and also across the dew line
(F (1) = FV (1)) but is discontinuous at Q = Qc (FL(1) 6= FV (0)).1

TBSpline3Gases decode the separate liquid and vapor phase properties for
any x in the range 0 to 1 as

FL(x) = F (xQc) (15.24)

FV (x) = F (Qc + [1 −Qc]x) (15.25)

Except that in the FL evaluation x is truncated to no more than (1−ε), where ε
is some small positive number, to avoid liquid/vapor property crosstalk when in-
terpolating near the discontinuity at x = 1. In the FV evaluation x is truncated
to no less than ε for the same reason near the discontinuity at x = 0.2 Currently
ε = 0.05 which requires a reasonably close spacing of the vj data points around
the critical density vc (controlled by configuration constant VptsInMixed in the
RefpropToSage utility below).

1 As Q ranges from 0 → Qc, Q/Qc ranges from 0 → 1 and as Q ranges from Qc → 1,
(Q − Qc)/(1− Qc) also ranges from 0 → 1.

2 As x ranges from 0 → 1, xQc ranges from 0 → Qc and Qc + [1 − Qc]x ranges from
Qc → 1, compatible with the piecewise definition of F .

104 CHAPTER 15. SCFUSION ROOT COMPONENT

Chapter 16

Moving Parts

Moving parts represent reciprocating masses, motion-constrained masses, vari-
ous types of springs and dampers, etc. Prior to Sage version 13 most moving-
part components came in both phasor and time-ring varieties. As of version
13 the phasor versions have been deprecated. They can still be found in the
Deprecated tab of the component palette but using phasor components is no
longer recommended. Experience has shown that sooner or later you will want
to connect one to a time-ring component and be forced to replace the component
with a time-ring version. In the early days of Sage it seemed that there might
be a time penalty for using time-grid components but this is now negligible.

Whether phasor or time-ring, the motion is assumed periodic in time. In the
phasor case, motion and forces are assumed sinusoidal so they can be represented
by their complex amplitudes (see chapter 8), while in the time-ring case, model
variables are solved on a periodic time-grid — a so-called time ring. The first
harmonic inputs or outputs of time-ring components are identical to complex
amplitudes.

16.1 Boundary Connections

Moving parts communicate with each other in one of two ways. Either via
forces acting on points of attachment or pressures acting on area faces. After
model solution, two attachments points connected together will share the same
motion, whereas two area faces connected together will share the same displaced
volume, much as two pistons connected by an incompressible hydraulic circuit
would. Connected faces need not have the same area. In either case there is
a positive or negative orientation to the connection. Positive-facing connectors
show up as labeled arrows on the right edge of model components. Negative-
facing connectors show up on the left. Only opposite-facing connectors may
be connected together. This is Sage’s equivalent of Newton’s law, which says
(sort of): a force may only mate with an equal but opposite reaction. Although
the real world admits forces directed arbitrarily in three-dimensional space,

105

106 CHAPTER 16. MOVING PARTS

SCFusion models confine forces to lie along a one-dimensional axis.

In the edit form, force connectors are arrows labeled FGt. Pressure connec-
tors are arrows labeled PGt. You are only allowed to connect a force to a force
and a pressure to a pressure.

16.2 Moving-Part Attachments

For inter-connection purposes moving parts require child model components
representing points of attachment and area faces. Some moving parts have built-
in connection child models. Other moving parts allow you to create as many
as you need from the model-component palette, choosing among the following
options:

Icon Purpose

time-ring negative-facing force attachment

time-ring positive-facing force attachment

time-ring negative-facing area attachment

time-ring positive-facing area attachment

When you drop one of these into the edit form, it is born with a connection
arrow which you can then move up one or more levels for connection there to
another moving part.

Generally speaking you will want to create exactly one connector child com-
ponent for each moving part you want to connect to. But you must not make
duplicate connections between the same moving parts. Doing so will cause a
singular equation system at solving time.

Using child model components to customize boundary connections is a typ-
ical Sage convention for all model classes. It allows you to create exactly as
many connections as your model components require without presuming any
minimum or maximum amount.

16.3 Moving-Part Variables

Moving parts also have a number of output variable found in all descendants:

F : (Fourier series, N) Net boundary force acting on the component resulting
from all connections.

16.4. GENERIC SPRING 107

W : (Fourier series, W) Power delivered by all boundary forces. Net force times
velocity. The mean value is equivalent to Wnet in the TPhsrMov model
component.

16.4 Generic Spring

TGtSpr

Generic springs are moving-part descendants that introduce a new input vari-
able:

K : (real, N/m) Spring stiffness.

The mathematics behind the scene solves displacement x from net applied
boundary force F and stiffness K using the equation

F = Kx (16.1)

F and x are discrete real values on a grid.
You may think of Sage springs as having one end fixed to ground and

the other subject to any number of attachment points or faces for connec-
tion to other model components — generally to reciprocating-mass components.
Generic springs have no mass.

16.5 Generic Damper

TGtDmp

Generic dampers are moving part descendants that introduce a new input vari-
able:

D : (real, N/(m/s)) Damping coefficient.

This time, the mathematics behind the scenes solves displacement x from net
applied boundary force F and damping coefficient D using the equation

F = Dẋ (16.2)

where ẋ is velocity. Moving parts maintain a computational grid containing,
not just displacement x, but velocity ẋ and acceleration ẍ as well, as individual
solution variables. In the grid these are labeled x, xd and xdd. The above equa-
tion determines xd explicitly, time-differentiating xd determines xdd explicitly
and the defining condition ẋ = xd determines x implicitly.

Like springs, you may think of Sage dampers as having one end fixed to
ground and the other subject to any number of attachment points or faces for
connection to other model components. You will usually be connecting them to
reciprocating mass components. They, too, are massless.

108 CHAPTER 16. MOVING PARTS

16.6 Reciprocating Mass

TGtRcp

Reciprocating masses, or reciprocators for short, solve displacement x from the
net resultant force F and mass M using Newton’s equation of motion

F = Mẍ (16.3)

where ẍ is acceleration. F includes an internally-specified body forcing function
in addition to applied boundary forces. Solving for x in the grid of solution
variables x, xd and xdd goes like this: The above equation determines xdd

explicitly, the defining condition ẋd = xdd determines xd implicitly and defining
condition ẋ = xd determines x implicitly.

Think of Sage reciprocators as masses that move back and forth according
to Newton’s law of motion. Mean velocity is zero as a requirement of periodic
motion, but mean position may be nonzero, depending on possible position-
dependent boundary forces or pressures.

Reciprocator introduce new variables:

Mass : (real, kg) Reciprocating mass.

FF : (Fourier series, N) Forcing function.

FX : (Fourier series, m) Displacement from mean position.

You can optimize any of the drivable real-parts of the Fourier-series forcing
function if you choose (see chapter 10).

16.7 Constrained Piston

TGtPis

This model components descend from the reciprocator components previously
discussed. Except it switches the role of forcing function and displacement, so
that now displacement is the input and required forcing function, to achieve
that displacement, is the solved quantity. Generally, you will only want to
connect a constrained motion reciprocator to model components like springs
and dampers that can accommodate the irresistible displacement provided by
these components. You should never directly connect together two constrained
motion reciprocators.

Mathematically, a constrained piston solves required forcing function Ff

from net applied boundary force Fb, displacement x and massM , using Newton’s
equation of motion

Ff = Mẍ− Fb (16.4)

where ẍ is acceleration.
The constrained piston introduces new variables:

FX : (Fourier series, m) Displacement from mean position.

FF : (Fourier series, N) Required forcing function.

You can optimize any of the drivable real-parts of displacement if you choose
(see chapter 10).

16.8. RELATIVE MOVING PARTS 109

16.8 Relative Moving Parts

The preceding springs and dampers are referenced to ground (fixed inertial
frame) at the end opposite the connection. So, for example, there is no way to
connect one between two reciprocating masses. Relative springs and dampers
solve this problem. Relative springs and dampers descend from the common
abstract class of relative moving parts.

Relative moving parts contain two position coordinates instead of one —
the coordinates of the positive and negative boundaries. Before, all connections
were thought of as made to the same boundary, which was represented by a
single coordinate. Now, positive connections are thought of as made to the
positive boundary and negative connections to the negative boundary.

Relative moving parts are born with exactly two force connectors, with no
provision for additional connectors. You may connect these built-in connectors
to opposite force connectors in any of the previous moving parts (such as re-
ciprocating masses). In any event, you must connect them to something, lest a
singular solution result.

All relative moving parts have the variables:

Fneg : (Fourier series, N) Force acting on the component negative boundary.

Fpos : (Fourier series, N) Force acting on the component positive boundary.
Fpos is equal and opposite Fneg for each component of the Fourier series.

W : (Fourier series, W) Power delivered by the boundary forces.

Sage assumes all relative moving parts are massless. As such, the dynamic
force balance may be written in terms of the negative and positive boundary
forces as

Fneg + Fpos = 0 (16.5)

Sage uses this condition to implicitly solve the negative coordinate xneg for all
relative moving parts.

16.9 Relative Springs

TGtRelSpr

Relative springs, just like generic (absolute) springs, are massless springs defined
in terms of the input variable:

K : (real, N/m) Spring stiffness.

Sage solves the negative coordinate xneg as above and the positive coordinate
xpos from the applied boundary force Fpos and stiffness K using the equation

Fpos = K(xpos − xneg) (16.6)

110 CHAPTER 16. MOVING PARTS

16.10 Relative Dampers

TGtRelDmp

Relative dampers, just like generic (absolute) dampers, are massless dampers
defined in terms of the input variable:

D : (real, N/(m/s)) Damping coefficient.

This time, Sage solves the positive coordinate xpos from the applied boundary
force Fpos and damping coefficient D using the equation

Fpos = D(ẋpos − ẋneg) (16.7)

16.11 Rotary Mechanisms

The components in this section model the various rotary mechanisms often used
to drive the pistons and displacers of stirling-cycle machines. There are actually
two types of rotary components, one representing various kinematic linkages and
the other representing the flywheel.

16.11.1 Flywheel

TGtFlywheel

A flywheel is used to drive one or more of the kinematic linkage components
below. Its child-model palette allows you to create any number of steady-torque
attachments, each born with a positive-facing torque connector designed to at-
tach to the negative-facing torque connector of a kinematic linkage. In physical
terms a flywheel behaves like a constant torque drive or motor with angular
momentum. It supplies exactly the torque required to balance the rotational
energy input or output from any torque connections while its rotation speed
fluctuates in response to those torque connections. The input and outputs for
a flywheel are:

IMoment : (real, kg m2) Moment of inertia I, including the moments of inertia
of any rotating parts in attached kinematic linkages. For a disk flywheel
of uniform thickness I = 1/2MR2, where M is the mass and R is the disk
radius. For a flywheel where all of the mass is concentrated in the outer
rim I = MR2.

FTorque : (Fourier series, N m) Total Torque T applied to the flywheel by all
torque connections as a function of time.

FOmega : (Fourier series, radians/s) Rotation angular velocity θ̇ as a function
of time.

FW : (Fourier series, W) Power delivered to the flywheel from all torque con-
nections.

16.11. ROTARY MECHANISMS 111

Rotational Realism The rotational angular velocity θ̇ fluctuates according
to the applied torque and moment of inertia I, which is an input. Except that
the mean value of angular velocity is constrained so that the rotational period is
always consistent with the root model Frequency input. In other words the crank
mechanism always rotates Frequency times per second although the rotational
speed fluctuates somewhat as it does in an actual machine.

If the flywheel moment of inertia (input Imoment) is too small the flywheel
rotation may stall as in an actual machine. To avoid numerical problems during
design work it is best to start with a high moment of inertia and reduce it later
on if necessary.

Torque Attachments There is only one type of torque-attachment available
within the flywheel component:

Icon Purpose

time-ring positive-facing torque attachment

Create as many as you need. Then move the connection arrows up one level
and connect them to the kinematic linkages in your model.

16.11.2 Kinematic Linkages

Kinematic linkages implement the math required to convert a rotary motion into
a back and forth reciprocating motion. The rotary motion comes from attach-
ment to a flywheel component via a torque connection. The torque connection
locks together the rotation of the flywheel and linkage. The back and forth
motion is coupled to one or more reciprocating masses that model such things
as the piston of a compressor model or piston and displacer of a stirling-cycle
model. Attaching a kinematic linkage to a reciprocating mass with a force con-
nection cause the kinematic linkage to drive the reciprocating mass according
to the linear motion of its specific linkage geometry.

Inputs and outputs common to all kinematic linkages are:

Rcrank : (real, m) Crank-throw radius r.

Phase : (real, radians) Initial crank-angle ρ at time zero. Time zero is when
the attached flywheel rotation angle θ is zero.

FTorque : (Fourier series, N m) Torque T applied by the linkage geometry to
the crank pin as a function of time.

Mandatory Flywheel Connection All kinematic linkages contain built-
in negative-facing torque connectors for mandatory connection to a flywheel
component (section 16.11.1) which defines the rotational angular momentum
coupled to the mechanism. Without a flywheel connection a kinematic linkage
will be unable to balance the torque on the crank pin produced by the linear

112 CHAPTER 16. MOVING PARTS

forces acting on the linkage geometry and the solve process will fail. The angular
momentum is defined in a separate component so more than one mechanism can
share the same flywheel and combine together to produce a single rotation angle
solution. In the physical world this simulates having two or more kinematic
linkages geared together and coupled to the same flywheel.

Reciprocating Motion All kinematic linkage components produce a linkage
linear motion x as a function of crank angle and define the torque T applied
to the crank pin as a function of the applied force to the reciprocating linkage.
Crank angle is the flywheel rotational angle θ plus the phase offset ρ provided
by input Phase. When calculating torque the reciprocating mass of the linkage
and its rotational moment of inertia are presumed to be zero. Any actual
reciprocating mass must be included in the attached reciprocating mass and
any rotational moment of inertia in the attached flywheel.

Beware Aliasing Errors Higher harmonics in the reciprocating linkage mo-
tion can produce significant solution errors if the time grid is too coarse — e.g.
root-model input NTnode is too small — and even lead to energy conservation
errors in attached reciprocator or spring components if NTnode is even.

Higher harmonics are produced by the nonlinear relationship between crank
rotation and linkage reciprocating motion. These harmonics are compounded if
the rotational angular velocity is itself fluctuating because the flywheel moment
of inertia (input Imoment) is small. If the highest harmonic resolved by the
grid is significant (e.g. amplitude of highest harmonic in FX output not small
compared to other harmonics) then you might want to increase NTnode to im-
prove solution accuracy. You should also increase it to an odd number because
NTnode must be odd to resolve the mean value plus both components of all
harmonics. When NTnode is even the highest harmonic is not fully determined.
This leads to finite differencing errors in the time grids for reciprocators and
springs which may produce time-average energy dissipation or production in
violation of physical principles. When NTnode is odd there are no finite differ-
encing errors and energy conservation is numerically exact, although there can
still be solution errors if NTnode is too small.

Failure to conserve energy in springs and reciprocators is especially bad be-
cause it can mislead you about the power delivered to the kinematic linkage
(output W). For example the PV power delivered by the working gas to a re-
ciprocator driven by a kinematic linkage will show up partly in the reciprocator
and partly in the kinematic linkage if there is an energy conservation error.

Scotch Yoke Linkage

TGtYokeLnk

The drawing below shows the kinematic linkage geometry for a Scotch yoke:

16.11. ROTARY MECHANISMS 113

R
a

x
R cos a

+-

The linkage linear displacement is just the x-component of crank pin motion

x = R cosα (16.8)

Simple Crank Linkage

TGtCrankLnk

A simple crank mechanism adds the input:

Lratio : (real, dimensionless) Connecting-rod length divided by crank-throw
radius L/R. The linkage geometry requires that L/R > 1 (L > R).

The kinematic linkage geometry is shown in this drawing:

R L

a
b

x
R cos a

+-
L cos b

The linkage linear displacement is the sum of the x-components of crank pin
motion and connecting rod displacement. Referring to the above drawing and
subtracting the constant length L the linkage displacement may be written

x = R cosα+ L cos β − L (16.9)

where angle β is:

β = arcsin

(
R sinα

L

)

(16.10)

The reason for subtracting L is so the linear displacement ranges above and
below zero according to Sage’s convention for moving parts. The extreme dis-
placements are x = R and −R at α = 0 and π. The displacements at α = π/2
and 3π/2 are both negative, not zero which has the implication that the time-
average displacement is also negative. Time-average displacement is zero only
in the limit of infinite connecting rod length L.

114 CHAPTER 16. MOVING PARTS

Rhombic Drive Linkage

TGtRhombic-
Lnk

A rhombic drive mechanism has a different pedigree from previous rotating
mechanisms. It descends from the relative moving parts documented above.
Because of that a rhombic drive mechanism is born with positive and negative
facing force connectors and does not support connections via child-model force
attachments like previous rotating mechanisms.

In the physical world a rhombic drive has two counter-rotating crankshafts
and four equal-length connecting rods, connected in pairs to the two crank pins
(see drawing below). The connecting rods produce two linkage motions xp and
xn. The Sage convention is that the xp motion is transmitted through the
positive facing force connection and the xn motion through the negative facing
force connection. The rhombic mechanism adds two inputs:

Eratio : (real, dimensionless) Rhombic eccentricity divided by crank-throw ra-
dius E/R (see drawing). Mathematics requires only that E/R be non-
negative (E/R ≥ 0). The drawing shows the typical case E/R > 1. The
case E/R = 0 corresponds to the simple crank piston.

Lratio : (real, dimensionless) Connecting-rod length divided by crank-throw
radius L/R. The linkage geometry requires that L/R > E/R + 1 (L >
E + R).

The drawing below shows only the kinematic linkage geometry and applied
forces for half of the mechanism, cut along the center-line (plane of symmetry)
at the top of the drawing:

R

L

a

b

xp

R cos a

R sin a

+-
CL

L

xn +-

E

L sin b

L cos b

b

The linkage linear displacements are the sum of the x-component of crank pin
motion plus-or-minus the connecting rod displacement. Referring to the above
drawing and including a constant offset x0 the linkage displacements may be

16.11. ROTARY MECHANISMS 115

written

xp = R cosα+ L cos β − x0 (16.11)

xn = R cosα− L cos β + x0 (16.12)

where angle β is:

β = arcsin

(
E −R sinα

L

)

(16.13)

The purpose for x0 is so the linear displacements range equally above and below
zero according to Sage’s convention for moving parts. In terms of the above
drawing x0 is the average of the max and min horizontal displacements between
xp (or xn) and the crank circle center. These max and min displacements
occur when the connecting rod L is directly in-line and directly opposite the
connecting rod radius R. The drawing shows the crank angle near the time of
maximum xp displacement

√

(L +R)2 − E2, which is the horizontal leg of the
right triangle with hypotenuse L+R and vertical leg E. Similarly the minimum
xp displacement is

√

(L −R)2 − E2. The average displacement is one-half the
sum, or

x0 =
1

2

(√

(L+R)
2 − (E)

2
+

√

(L −R)
2 − (E)

2

)

(16.14)

16.11.3 Rotary Mechanism Theory

The physics of rotary mechanisms is relatively simple with the roles of kinemat-
ics and rotational inertia handled by distinct model components. Kinematic
linkage components handle the kinematic part. They derive from the common
ancestor of all time-grid moving-parts. The inherited displacement variable x
represents the linear back and forth motion of the linkage solved as an explicit
function of crank angle. More on crank angle later. The flywheel component
handles the rotational inertia part. It implements a time grid with three state
variables θ, θd and θdd, corresponding to the rotation angle as a function of
time, angular velocity (first time derivative θ̇) and angular acceleration (second
time derivative θ̈).

Flywheel Angular Acceleration

Flywheels solve state variable θdd (angular acceleration) explicitly from the ro-
tary equivalent of Newton’s equation of motion written in the form:

θdd =
TE + Ts

I
(16.15)

where moment of inertia I is an input and TE is the net applied torque by
external torque connections. Indirectly TE comes from the forces acting on
the reciprocating mass (or masses) attached to the kinematic linkages that are
attached to the flywheel. In addition to inertial forces the reciprocating mass

116 CHAPTER 16. MOVING PARTS

transmits whatever other forces might be attached to it (e.g. pressure forces
acting on piston frontal areas). TS is the internal torque applied to the flywheel
required to keep it rotating at an average angular velocity of ω (root model
variable Omega).

TS is an invisible implicit variable needed for the mathematical solution. Its
purpose is to offset any time-average of the external applied torque TE that
would otherwise tend to increase or decrease the rotation speed with time. As if
the output shaft is internally connected to a constant torque motor or alternator
that regulates the speed. TS is not a grid state variable but rather solved as a
single implicit variable of the flywheel component itself. While the solved value
of TS is not displayed as an output variable its valued can be inferred as the
negative of the mean value of the FTorque Fourier series output. More on the
solution of TS below.

Flywheel Angular Velocity

Flywheels solve state variable θd (angular velocity) implicitly from

dθd/dt− θdd = 0 (16.16)

In other words, the time derivative of solution variable θd equals the solution
variable θdd.

Flywheel Crank Angle

In the limit of infinite moment of inertia the flywheel rotation angle approaches
θ = ωt. But because the moment of inertia is finite flywheels must solve crank
angle implicitly from

dθ/dt− θd = 0 (16.17)

That is, the time derivative of solution variable θ equals the solution variable
θd. There is however a complication. Evaluating the time derivative dθ/dt in
equation (16.18) does not work in Sage because θ(t) is not a periodic function.
It generally increases monotonically with time so there is always a discontinuity
of 2π somewhere in the grid which Sage’s time differencing operator fails to
deal with. The solution to this problem is to decompose θ(t) into the sum of
a uniform part ωt and a fluctuating part θ̃ and replace the previous equation
with

dθ̃/dt+ ω − θd = 0 (16.18)

Fluctuating part θ̃ is a continuous periodic function because it results from the
from higher harmonics in the angular velocity. So it causes no problems with
time differencing. Sage does not actually maintain θ̃ as a grid state variable but
rather just evaluates the derivative dθ̃/dt as d(θ− ωt)/dt.

Implications

Satisfying equation (16.18) at all time nodes implies that the mean value of
θd (angular velocity) is ω, as required for consistency of the root model input

16.11. ROTARY MECHANISMS 117

Frequency. This follows by noting that the time-mean of the entire left-hand
side of equation (16.18) is zero and also that the time-mean of dθ̃/dt, or any
time derivative for that matter, is necessarily zero in the periodic solution grid
employed by Sage.

For similar reasons, satisfying equation (16.16) at all time nodes implies that
the mean value of θdd is zero, which already determines implicit slack variable
TS discussed above. What then to use for the implicit function associated with
TS in the solution scheme? Sage uses the only other physical condition not
imposed by the above solution method, namely that

θ(0) = 0 (16.19)

So solving TS enforces the required initial crank angle while the rest of the
solution ensures that TS is the value required to make the time-average of θdd

zero.

Kinematic Linkage Crank Angle

Kinematic linkages augment the displacement time grid inherited from their
moving part ancestors (state variables x, xd, xdd) with state variables θ and θd,
corresponding to rotation angle and angular velocity. By virtue of its torque
connection, θ and θd in a kinematic linkage are the same as for the flywheel to
which it is attached. But there needs to be a way to force the torque imposed
by the flywheel connection to balance the torque produced by the reciprocating
mass connection to the kinematic linkage. Kinematic linkages do that by solving
θ implicitly with the torque balance equation as the implicit function.

TR + TL = 0 (16.20)

where TR is the torque supplied by the flywheel via the torque connection and
TL is the torque applied to the crank pin via force connections to reciprocating
masses.

The kinematic linkage crank angle α is offset from the flywheel rotation angle
θ by a fixed phase angle offset ρ (input Phase)

α = θ + ρ (16.21)

The phase offset ρ allows the crank angle to differ from the flywheel rotation
angle so two or more mechanisms connected to the same flywheel can have
different phases.

Kinematic Linkage Torque

Kinematic linkages calculate the torque T applied to crank pin from the energy
conservation principle

T θ̇ = F ẋ (16.22)

where θ̇ is state variable θd, F is the sum of applied boundary forces and ẋ is
state variable xd. In English, the rate of rotational work done by the torque

118 CHAPTER 16. MOVING PARTS

acting on the crank pin equals the rate of work done by the applied forces acting
on the reciprocating linkages. This principle holds because there is no mass or
moment of inertia in a kinematic linkage to store energy.

This way is much simpler than calculating torque directly as a function
of applied boundary force and crank angle (using force-balance diagrams and
trigonometry). It also guarantees that global energy conservation holds. Any
mechanical energy that enters or leaves through the reciprocating linkage nec-
essarily equals the mechanical energy transmitted to the flywheel.

16.12 Nonlinear Spring

TGtSnl

A nonlinear spring is a generic spring where the spring stiffness K varies as
a quadratic function of position x. Most actual springs are nonlinear to some
extent, depending on how far extended from their rest position x = 0. This
component allows you to model the effects of operating a spring beyond its
linear range. The stiffness function is defined by four inputs:

K0 : (real, n/m) Stiffness K0 at x = 0.

Xm : (real, m) Reference extension xm.

Rp : (real, dimensionless) Stiffness ratio Rp = K/K0 at x = xm.

Rn : (real, dimensionless) Stiffness ratio Rn = K/K0 at x = −xm.

You can read these, more-or-less directly, from a plot of local spring stiffness
K vs x generated either experimentally or computationally. In terms of the
restoring force F (x), the spring stiffness is K(x) = −dF/dx. A more precise
approach would involve finding the best-fit parabola (not necessarily symmetric
about the rest position) to the function K(x) over the intended operating range
and then defining K0, Xm, Rp, Rn consistent with the parabola.

For internal processing, Sage translates the above inputs into a quadratic
spring stiffness in the form

K(x) = K0

(
1 + a(x/xm) + b(x/xm)2

)
(16.23)

Coefficients a and b come from substituting xm and −xm for x in equation
(16.23), which results in the equation system

Rp = 1 + a+ b (16.24)

Rn = 1 − a+ b (16.25)

with the solution

a = (Rp −Rn)/2 (16.26)

b = (Rp +Rn)/2 − 1 (16.27)

16.13. RELATIVE NONLINEAR SPRING 119

The restoring force provided by a nonlinear spring is

F (x) = −K0x

(

1 +
a

2
(x/xm) +

b

3
(x/xm)2

)

(16.28)

The position x = 0 is the neutral force position.
You can attach a nonlinear spring to a reciprocating mass for modeling the

resultant motion of nonlinear spring-mass systems. Even when driven by a
sinusoidal forcing function, such a system will produce a reciprocating motion
with higher harmonics. And the resonant frequency will change, depending on
amplitude.

16.13 Relative Nonlinear Spring

TGtRelSnl

A relative nonlinear spring is just like the above nonlinear spring, except it
is connected between two moving parts instead of between a moving part and
ground (fixed inertial frame). The same input variables and governing equations
apply except that position coordinate x is replaced by the difference of the
endpoint coordinates xpos − xneg.

16.14 Interpolated Spring

TSprFx

A descendant of the nonlinear spring component that interpolates spring force
F (x) directly from a cubic-spline input:

Fx : (cubic spline, dimensionless) A set of data pairs (xi, Fi), where xi is a po-
sition relative to the spring zero position in meters (or other units selected
in the model-class options dialog) and Fi is the restoring force at that po-
sition. A restoring force means that Fi has the opposite sign as xi. The xi

values must be listed in increasing order from the largest negative position
expected during operation at the top to the largest positive position at
the bottom. The number of data pairs is arbitrary and will depend on the
complexity of the variation of spring force with position. The input dialog
for specifying the (xi, Fi) pairs has a View Interpolation button you can
click to see the smooth curve resulting from cubic spline interpolation. It
is possible to paste values from a spreadsheet directly into the pairs input
dialog.

This component shares the same output variables as its ancestor nonlinear spring
component. It deprecates the K0, Xm, Rp and Rn inputs because of the new
formulation.

It is up to you to specify Fx according to measurements of your particular
spring. If the F (x) data is too nonlinear or asymmetric may have to increase the
value of NTnode in the root model (number of time nodes) in order to ensure
that the computational grid can resolve the F (x) curve. You can gauge this by
plotting the spring connector force vs time curve in the resulting model solution.

120 CHAPTER 16. MOVING PARTS

You should also keep an eye on the time-average spring power inflow (output
W.Mean), which should be zero or close. Theoretically, for a continuum spring
the cyclic spring work is the integral

∮
Fdx (i.e. area under a (x, F (x)) curve),

which must be zero because x returns to its original value over an equilibrium
cycle. Because of aliasing errors it may happen when F (x) is not a low-order
polynomial or the resulting motion x(t) is not very sinusoidal that W.Mean is
non-zero. In other words the spring dissipates or creates power as a numerical
artifact. Generally speaking the size of this power artifact should decrease with
increasing time nodes.

16.15 Relative Interpolated Spring

TRelSprFx

A relative interpolated spring is just like the above interpolated spring, except
it is connected between two moving parts instead of between a moving part
and ground (fixed inertial frame). The same input variables and governing
equations apply except that position coordinate x is replaced by the difference
of the endpoint coordinates xpos − xneg.

16.16 Stick-Slip Damper

TGtFricDmp

A stick-slip damper approximates the frictional drag of a sliding object moving
over a surface. It imposes a nearly constant drag force FD that opposes the di-
rection of motion. The force changes sign when the sliding velocity changes sign
and is zero when the velocity is zero. In the usual engineering approximation,
FD would be the product of a coefficient of friction, depending on materials
involved, and the side-force pushing the two materials together (e.g. weight or
magnetic attraction). This component knows nothing about either coefficient
of friction or side force. It only represents the product of the two as input FD.
The name stick-slip comes from the fact that the sliding object will not move if
pushed with a force less than FD, then suddenly begin to move when the force
exceeds FD. There are two inputs for this component:

Fdrag : (real, n) Stick-slip drag force FD.

Vrel : (real, m/s) Reference velocity vr. This is not a critical input but should
be on the order of the sliding velocity expected in the model, for reasons
explained below.

To improve solution convergence the boundary force does not change discon-
tinuously from −FD to FD when the component velocity ẋ changes sign, but
rather changes at a fast but linear rate between velocities −εvr and εvr, where ε
is a small number and vr is the reference velocity input, as illustrated in figure
16.1. For clarity, figure 16.1 shows the case ε = 0.1. The value ε = 0.001 is
hard-wired into Sage. Mathematically the stick-slip force F for any positive

16.17. RELATIVE STICK-SLIP DAMPER 121

� � � �

� � � �

� � � �

� � �

� � �

� � �

� � �

� �

���
�	

��
��
��
�� � �

� � � � � � � � � � � � � � � � � � � �

 ! " # $ % & ' " () * + # , - & . , ' * # " ! /
0 1 2 3 4

Figure 16.1: Stick-slip frictional drag as a function of velocity, as implemented
by Sage. As the value of ε decreases the force approximates a step function.
Sage uses a value ε = 0.001.

velocity ẋ is

F

FD
=

{
1
ε

ẋ
vr

if ẋ
vr
<= ε

1 + ε
(

ẋ
vr

− ε
)

if ẋ
vr
> ε

(16.29)

The force takes the value FD at the transition velocity ẋ = εvr and rises to
approximately (1+ε)FD at the reference velocity ẋ = vr . For a negative velocity
the force is flipped. The reason why force does not remain constant above the
transition velocity is because of the way Sage implements the solution. Instead
of calculating force from velocity Sage actually does it the other way around,
calculating the velocity ẋ from the applied boundary force, which may be outside
the range (−FD, FD) as the solution converges. In the above formulation each
value of boundary force corresponds to a unique velocity.

16.17 Relative Stick-Slip Damper

TGtRelFricDmp

A relative stick-slip damper is just like the above stick-slip damper, except
it is connected between two moving parts instead of between a moving part

122 CHAPTER 16. MOVING PARTS

and ground (fixed inertial frame). The same input variables and governing
equations apply except that position coordinate x is replaced by the difference
of the endpoint coordinates xpos −xneg. The relative nonlinear spring descends
from the relative moving parts documented above.

16.18 Motion Snubber

TGtSnubber

Something between a nonlinear spring and damper, a motion snubber imposes
displacement limits on an attached reciprocating mass by generating a force
that approximates an energy dissipating collision when the motion exceeds those
limits. Otherwise this component produces essentially zero force on whatever it
may be attached to. Simulating a collision is not an easy task for Sage because
actual collision forces tend to be abrupt and dependent on the elasticity and
restitution coefficient of the materials at the impact point. This component on
the other hand produces a collision force that is smooth enough to resolve within
Sage’s coarse time-grid and distributed over the entire solution period. Because
collision forces are inherently non-sinusoidal, this component only comes in a
time-ring version and supports only time-ring force connections (FGt) to time-
ring moving parts.

Because of the non-sinusoidal motions likely to result when using this com-
ponent you may have to increase the number of time nodes in the solution grid
above the default NTnode = 7 (NTnode is a root component input). You may
need NTnode = 9, 11 or even higher to adequately resolve the motion. Experi-
ment! When using this component it is a good idea inspect the actual solution
grid of the snubbed component (menu: File|Save Solution Grid) because it is
difficult to visualize the solved motion from the Fourier series output FX.

The motion snubber has five inputs and one output:

Mscale : (real, kg) snubbed mass scale. The approximate mass ms of the recip-
rocating mass or combined reciprocating masses the snubber is connected
to. This input largely determines the magnitude of the collision force.
A force sufficient to stop a heavy inertial mass may be too high for a
light inertial mass and generate unrealistic solution artifacts. (see theory
below)

Xlimit : (real, m) Displacement limit x`. For motion x between −x` and x`

collision forces are essentially zero. For x beyond the motion limits the
collision force transitions smoothly over a short distance from zero to the
maximum value. So the displacement limit is not a hard value and you
can expect some motion beyond the limits in the final solution.

Sp : (real, dimensionless) Fraction of the baseline snubbing force implemented
at x = x`. Set to zero to eliminate collision force at positive limit.

Sn : (real, dimensionless) Fraction of the baseline snubbing force implemented
at x = −x`. Set to zero to eliminate collision force at negative limit.

16.18. MOTION SNUBBER 123

Kfrac : (real, dimensionless) Spring content fraction. Determines ratio of spring
forces to dissipation forces (Fk/Fs below) as a means to tune the resulting
motion.

FX : (real, m) Displacement Fourier series output.

You can tune the collision force by adjusting Mscale, Kfrac and to some
extent Sp and Sn. The magnitude of the collision force scales directly with the
product of Mscale and Sp or Sn. The phase of the resulting motion depends
somewhat on Kfrac.

Collision Theory Imagine a reciprocating mass ms moving with sinusoidal
motion x = cos(ωt). There is a smooth motion reversal at the positive and
negative peak values which is the result of a sinusoidal applied force. If instead
there is an abrupt collision force just before the peak values the motion will
now contain higher harmonics — mainly odd harmonics because only they are
phased correctly to oppose both positive and negative peaks of the fundamental
motion. The extreme example of collision motion is a square wave for which the
Fourier series decomposition is

x = cos(ωt) − 1

3
cos(3ωt) +

1

5
cos(5ωt) + . . . (16.30)

To produce motion with odd harmonics requires imposing a snubbing force with
odd harmonics, which is the motivation for implementing a collision force as the
product of a nonlinear spring and damper in the form

Fs = −Sbx
2ẋ (16.31)

Sb is a baseline snubbing coefficient to be determined. For x sinusoidal or
nearly so Fs has high third harmonic content as shown in Figure 16.2. One
might define a critical snubbing coefficient Sc as the coefficient that dissipates
the peak kinetic energy of the moving mass msv

2/2 over half the cycle period.
If the motion is x = x` cos(ωt) the peak kinetic energy is msx`

2ω2/2. For
that same motion the average power dissipated by the snubbing force is the
time-average of Sc(xẋ)2 which evaluates to Scx`

4ω2/4, so the energy dissipated
over half the cycle period π/ω is Scx`

4ωπ/4. Equating the two dissipations and
solving gives

Sc =
2

π

msω

x`
2

(16.32)

The baseline snubbing coefficient Sb used in Sage’s motion snubber component
is somewhat higher than Sc, based on numerical experiments of actual collision
simulations.

The above snubbing force is the basis for Sage’s motion snubber component
but there are also some practical refinements. First of all the snubbing force is
not active unless the motion actually exceeds the allowable limits. Beyond the
limits there is a smooth transition to full force rather than an abrupt change.

124 CHAPTER 16. MOVING PARTS

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
ωt

Snubbing Force for Sinsuoidal Motion

x = cos(ωt)

Fs = -x2 dx/dt

Figure 16.2: Sinusoidal piston motion x and snubbing force produced by
function (16.31) with unit snubbing coefficient. The force for the positive-
displacement half cycle cancels that of the negative half cycle, so the time av-
erage force and net spring content is zero. But the force shifts with velocity so
it dissipates energy.

Abrupt changes are bad because they may cause solution instability. The force
transition is implemented in terms of a weight factor W that multiplies the
force. The weight factor depends on the instantaneous displacement x and cyclic
peak values xm ± x1 where xm is the time-average displacement and x1 is the
amplitude of the first harmonic in its Fourier series expansion. The weight factor
is near zero when the cyclic peak values are within limits, although not exactly
zero to avoid solution indeterminacy. When instantaneous position is positive
and its Fourier-series peak value exceeds the limit, the weight function increases
smoothly but rapidly to the value of input Sp. When the instantaneous position
is negative and its Fourier-series negative peak value exceeds the negative limit,
the weight function increases smoothly but rapidly to the value of input Sn. In
this way the force can simulate a single-ended collision if Sp or Sn are zero.

It is also useful to provide some degree of spring component to the snubbing
force to prevent the motion from drifting off center if there are no external
springs attached to the snubbed reciprocator and also to provide a means to
tune the resulting motion so it is more realistic. So the actual force produced
by the motion snubber component is the sum of a dissipative component Fs and
a spring component Fk of the form

F = −W (Fs + Fk) = −W
(
Sbx

2ẋ+Kbx
)

(16.33)

The motion snubber component does not specify Kb as an input but rather
calculates it from input Kfrac, which is the ratio Fk/Fs. Ignoring fluctuating

16.19. RELATIVE MOTION SNUBBER 125

quantities this is the ratio of spring force (Kbx`) to snubbing force (Sbωx`
3) or

Fk

Fs
=

Kb

ωxb
2Sb

(16.34)

Solving for Kb, the spring stiffness is Kfrac times ωxb
2Sb.

16.19 Relative Motion Snubber

TGtRelSnub-
ber

A relative motion snubber is just like the above motion snubber, except it is
connected between two moving parts instead of between a moving part and
ground (fixed inertial frame). The same input variables and governing equations
apply except that position coordinate x is replaced by the difference of the
endpoint coordinates xpos − xneg.

16.20 Free Driver

TGtDrv

A free driver is similar to a time-ring generic damper except it provides a neg-
ative damping effect so as to simulate a driver that adds, rather than absorbs,
mechanical power to whatever it is attached to. It provides a force in proportion
to velocity. You might think of it as providing something like the force of a free
piston in a free-piston stirling engine except without all the physics.

Like a damper, this component does not determine the phase of the force
but rather adjusts to the phase of the moving object to which it is attached.
The phase of that moving object must be determined by some other component
of the overall model which provides a controlling phase input. So you might use
a free driver to model a load, such as a linear alternator, subject to a control
voltage or current that specifies the reference phase angle. The driving force
depends on the input variable:

D : (real, N/(m/s)) Driving coefficient.

Sage solves displacement x from net applied boundary force F and driving
coefficient D using the equation

F = −Dẋ (16.35)

where ẋ is velocity. Under Sage force sign conventions this always produces an
equal and opposite force on the attached object that provides mechanical power
input.

A free driver has one end fixed to ground and the other subject to any number
of attachment points or faces for connection to other model components.

126 CHAPTER 16. MOVING PARTS

Chapter 17

Thermal Solids

Thermal solids represent the solid heat flow pathways found in SCFusion ma-
chines. Some are designed to be connected to the gas model components within
heat exchangers. Some are designed to be connected only to other thermal solid
components. The boundary connections to thermal solids may represent point
contacts or line (surface) contacts carrying steady or time-varying heat flows.
Some thermal solids are born with their boundary connectors while others get
them via palette-created child model components. Ultimately your job is to
connect the thermal solids in your SCFusion machine to form pathways from
the working gas to a number of isothermal temperature sources or sinks.

This chapter provides detailed documentation for individual components.
For usage suggestions and examples in specific model settings see the sample
models in the Apps\SCFusion\Samples sub-directory under the installation di-
rectory.

17.1 Attachment Child Components

There are several types of thermal solids, with mathematical representations
involving anything from single points, to space grids, to space-time grids. Some
of these are born with appropriate heat-flow connectors, intended for connection
to a gas component or another thermal solid component. Others have optional
connections depending on which of the following child-model components you
drag and drop into your edit form:

127

128 CHAPTER 17. THERMAL SOLIDS

Icon Purpose

steady negative heat-flow end

steady positive heat-flow end

space-grid negative heat-flow face

space-grid positive heat-flow face

space-grid negative heat-flow end

space-grid positive heat-flow end

When you drop one of these into the edit form, it is born with a connection arrow
which you can then move up one level to the parent-model page for connection
there to a mate, perhaps originating in another thermal solid component. The
type of heat-flow connector arrow you get depends on the individual child com-
ponent you create. You should have no trouble sorting out which connectors
get connected where from the context of your problem and subsequent docu-
mentation.

17.2 Coordinate Conventions

All of the thermal solids attempt to adhere to a coordinate convention, both in
their underlying model and their icon representation. A typical thermal solid
domain is a rectangular solid that looks like this:

17.3. ENTROPY GENERATION 129

- x

6

z

�
��

y�
�

�
�

�
�

�
�

�
�

�
���� ��� ���

q(x)

6 6 6

q(x, t)

-q

Generally speaking, the space-time varying q(x, t) heat flow on the upper
z face (with unit normal z) is reserved for connection to a gas domain, the
steady but spatially-distributed q(x) heat flow on either y face is for connection
to another a mating y face, while the steady single-point q heat flow on either
x face is for connection to a mating x face. Generally, one or two, but not
all, of these heat flow connections are available in any given thermal solid.
Computationally, we discretize our solid in the x direction only — never the
y or z directions. That is, we slice it into a stack of wafers rather than dice
it into tiny cubes. Individual thermal solid model components make different
assumptions about the physics within the volume elements. Sometimes there is
time variation, sometimes there is not.

17.3 Entropy Generation

Most thermal solids involve the conduction of heat across finite temperature
differences and therefore represent irreversible entropy-generating processes (see
chapter 14).

The second law of thermodynamics applied to the external surface of our
thermal solid, over a full periodic cycle is

External Entropy Generation =

∮

dt

∫

ds

n · q
T

(17.1)

where n · q is the surface normal heat flux and T is the surface absolute tem-
perature. Entropy generation defined this way refers to the increase in entropy
in the universe surrounding the thermal solid domain as a result of internal
irreversibilities.

130 CHAPTER 17. THERMAL SOLIDS

The internal generation of entropy may be calculated as

Internal Entropy Generation = −
∮

dt

∫

dv

q · ∇T
T 2

(17.2)

where the integrand is the local rate of entropy production due to heat flow in
a temperature gradient. Since this is the only irreversible process in a thermal
solid, its integral must equal the external entropy generation. We can prove this
is so by applying Gauss’s theorem to the external entropy generation formula,
obtaining

External Entropy Generation =

∮

dt

∫

dv

∇ · q

T
(17.3)

which can be simplified by substituting the vector identity 1
T ∇·q+q ·∇(1/T) for

∇ · q
T

, then ignoring the first term because ∇ · q ∝ ∂T
∂t

, which gives
∮

dt
1
T
∇ · q ∝

∮

dT
dT/T = 0. Then substituting −∇T/T 2 for ∇(1/T) in the second term, we

wind up with the above internal generation formula. This simplification holds
only approximately when we substitute finite differences for exact derivatives.

Entropy generations are presented as available-energy outputs by multiply-
ing the entropy integrals by Tnorm, the normalization temperature of the root
SCFusion model component. Each model component evaluates its entropy in-
tegrals in a manner appropriate to the physics and temperature discretization
embodied within it.

17.4 Thermal Properties

Certain thermal solid model components have an enumerated-type variable
which selects the solid type from a list of choices. Each available solid is it-
self a software object with sufficient data encapsulated within it to know its
important properties. These properties are.

Density : (kg/m3) Constant mass density ρs.

Conductivity : (K, W/(m K)) A cubic spline variable with temperature vs con-
ductivity (T, ks(T)) data pairs covering a broad range of temperatures.

Specific heat : (K, J/(Kg K)) A cubic spline variable with temperature vs
specific-heat (T, cs(T)) data pairs covering a broad range of temperatures.

The values of density and the cubic-spline interpolation pairs appear after the
enumerated identifier in display windows and the output listing. The solid
choices come from a default data base file solid.dta, or a data base file customized
by you. (see chapter 28)

An instance of a solid object has methods (subroutines) that can be called
upon to return conductivity ks, specific heat cs or thermal diffusivity α as
functions of temperature T , whenever needed by the model component. This
is, essentially, just a matter of cubic-spline interpolation using the appropriate
set of data pairs.

17.5. FIXED TEMPERATURE HEAT SOURCES 131

17.5 Fixed Temperature Heat Sources

These components may serve as either heat sources or sinks with a fixed temper-
ature that you specify as an input. The heat flow in any connection is supposed
to be regulated by the physics of the adjoining model component which, in ef-
fect, sees a fixed temperature boundary. Connecting together two heat sources
is likely to result in a singular solution.

17.5.1 Point Heat Source

TStdyQsrc

This component allows any number of steady point heat-flow connections to the
positive or negative x ends of adjoining thermal solids. Its variables are:

T : (real, K) Source temperature.

QNeg : (real, W) Net heat flow through negative x end.

QPos : (real, W) Net heat flow through positive x end.

17.5.2 Time-Grid Heat Source

TGtQsrc

This component allows any number of time-grid heat-flow connections to the
positive or negative x ends of adjoining thermal solids. But only thermal solids
that support time varying internal temperatures. These include the thick-
surface, thin-surface and rigorous-surface components of section 17.8. It differs
from the above point-heater component by imposing temperature continuity at
each time node instead of just time-mean temperature continuity. This can be
important when the solid heat capacity is relatively low, allowing large time-
varying temperatures. Its variables are:

FT : (Fourier series, K) Source temperature.

FQNeg : (Fourier series, W) Net heat flow through negative x end.

FQPos : (Fourier series, W) Net heat flow through positive x end.

17.5.3 Line Heat Source

TGxQsrc

This component allows any number of steady distributed heat-flow connections
to the positive or negative y faces of adjoining thermal solids. Its variables are:

QyNeg : (real, W) Net (x integrated) heat flow through negative y face.

QyPos : (real, W) Net heat flow through positive y face.

Since a line source is always created as a child component to a parent, it always
gets its temperature distribution T (x) from that parent, in the form of a cubic
spline variable.

132 CHAPTER 17. THERMAL SOLIDS

17.5.4 Independent Line Heat Source

TGxQsrcInd

Similar to a line heat source except sets the temperature distribution according
to an independent input rather than the temperature distribution inherited from
the parent component:

Tsrc : (cubic spline, K) Temperature distribution T (x) where x = 0 is the
negative endpoint and x = 1 is the positive endpoint.

This component allows you to anchor the temperatures of several heat exchanger
components simultaneously by defining a temperature input at a higher model
level and recasting Tsrc in terms of that input. The Tinit distribution of the
above line heat source is a constant used for normalization purposes and cannot
be recast.

17.5.5 Isothermal Surface

TGxtQsrc

This component allows a single time-varying distributed heat-flow connection to
the negative z face of a gas domain. It functions as an isothermal heat exchanger
surface. Its variables are:

QwNet : (real, W) Net (t averaged and x integrated) heat flow through positive
z face.

In principle, the source temperature could have x and t variation, but it doesn’t.
Temperature is constant with time. Only x variation is allowed much like the
preceding component. Also, like a line source, this component always gets its
temperature distribution T (x) from a cubic spline constant in a parent model
component. Heat flow generally varies both in x and t on a space-time grid
according to the heat flow to or from the attached gas domain.

17.5.6 Independent Isothermal Surface

TGxtQsrcInd

Similar to an isothermal surface except sets the temperature distribution accord-
ing to an independent input rather than the temperature distribution inherited
from the parent component:

Tsrc : (cubic spline, K) Temperature distribution T (x) where x = 0 is the
negative endpoint and x = 1 is the positive endpoint.

This component allows you to anchor the temperatures of several heat exchanger
components simultaneously by defining a temperature input at a higher model
level and recasting Tsrc in terms of that input. The Tinit distribution of the
above isothermal surface is a constant used for normalization purposes and
cannot be recast.

17.6. FIXED HEAT FLOW SOURCES 133

17.6 Fixed Heat Flow Sources

These components are similar to the fixed-temperature heat source components
of section 17.5 except the roles of temperature and heat flow are reversed —
heat flow is input and temperature is solved. They can be used to model elec-
trical resistance heating (cryocooler loads or engine heaters) or other situations
where heat flow is a more appropriate boundary condition than temperature.
Beware though that using heat flow rather than temperature as a boundary
condition may destabilize your model. It may lead to diverging-temperature
non-converging solutions if your model cannot accommodate the specified heat
flows. Especially when solving from initial conditions.

17.6.1 Point Heater

TStdyHeater

Similar to the above point heat source except specifying heat production rather
than temperature as the independent input. Its variables are:

Qhtr : (real, W) Heat production.

T : (real, K) Solved temperature.

QNeg : (real, W) Net heat flow through negative x end.

QPos : (real, W) Net heat flow through positive x end.

On solving, the temperature T adjusts until the heat flow to external model
components QPos – QNeg equals heat production Qhtr.

17.6.2 Time-Grid Heater

TGtHeater

Similar to the above time-grid heat source except specifying heat production
rather than temperature as the independent input. Its variables are:

FQhtr : (Fourier series, W) Heat production.

FT : (Fourier series, K) Solved temperature.

FQNeg : (Fourier series, W) Net heat flow through negative x end.

FQPos : (Fourier series, W) Net heat flow through positive x end.

On solving, the temperature FT adjusts until the heat flow to external model
components FQPos – FQNeg equals heat production FQhtr.

17.6.3 Line Heater

TGxHeater

Similar to the above line heat source except specifying heat production rather
than temperature as the independent input. Its variables are:

134 CHAPTER 17. THERMAL SOLIDS

Qhtr : (cubic spline, W) Heat production distribution Q(x) where x = 0 is
the negative endpoint and x = 1 is the positive endpoint. The units are
W (watts per dimensionless length) rather than W/m (watts per actual
length). The average value of Qhtr is the total heat production.

QyNeg : (real, W) Net (x integrated) heat flow through negative y face.

QyPos : (real, W) Net heat flow through positive y face.

TNeg : (real, K) Temperature T at negative x end.

TPos : (real, K) Temperature T at positive x end.

TMean : (real, K) Spatial averaged (x average) temperature T .

A line heater is always created as a child component to a parent and gets its
initial temperature distribution T (x) from that parent. On solving, T (x) adjusts
until the heat flow to external model components QyPos – QyNeg equals heat
the average value of the heat production distribution Qhtr

17.6.4 Surface Heater

TGxtHeater

Similar to the above line heat source except specifying heat production rather
than temperature as the independent input. Its variables are:

Qhtr : (cubic spline, W) Heat production distribution Q(x) (see Line Heater
above).

QwNet : (real, W) Net (t averaged and x integrated) heat flow through positive
z face.

TNeg : (real, K) Temperature T at negative x end.

TPos : (real, K) Temperature T at positive x end.

TMean : (real, K) Spatial averaged (x average) temperature T .

This component also gets its initial temperature distribution T (x) from a parent
component. On solving, T (x) adjusts until the heat flow to the connected gas
domain QwNet equals heat the average value of the heat production distribution
Qhtr. The solved temperature T (x) is constant with time and regulates only the
time-average heat flow to the gas domain. There is generally a time dependent
heat flow to the gas domain but it is regulated by the time-varying physics
within the gas domain.

17.7 Heat Conductors

These are intended as parasitic conduction paths or intermediate paths from
primary surfaces in contact with a gas component to heat sources or sinks. A
regenerator pressure wall or a heat exchanger fin would be good examples.

17.7. HEAT CONDUCTORS 135

17.7.1 Bar Conductor

TStdyQcnd

This component models a simple linear solid conduction path with built-in
steady heat-flow connectors at the positive and negative x ends. Heat flow
is governed by

Q =
A

L

∫

ksdT (17.4)

where area A and length L are specified directly and conductivity ks is a
temperature-dependent property of the solid material. The integration lim-
its are two hidden internal variables Tp and Tn, at the positive and negative x
ends. The integration is accomplished without a spatial grid using a cubic-spline
integration method available for solid properties. Displayed variables are:

A : (real, m2) Cross section area A.

L : (real, m) conduction length L.

Solid : (enumerated) Solid material.

TsNeg : (real, K) Temperature Tn at negative x end.

TsPos : (real, K) Temperature Tp at positive x end.

QNeg : (real, W) Net heat flow Qn through negative x end.

QPos : (real, W) Net heat flow Qp through positive x end.

AEQ : (real, W) Available energy loss to heat flow.

QNeg and QPos are necessarily equal after solution, but they are listed as sep-
arate outputs because, logically, they are.

There is a variation of this component where variables A, L and Solid do
not appear in the display. They are instead inherited from the parent model
component. This type of conductor is typically used as a child component to
a parent model component whose main purpose is not heat conduction but
in whom heat conduction needs to be tagged on as an independent parasitic
phenomenon. For example, a conductive-surface component within a canister
(see chapter 19). All this is completely transparent to the user so there should
be no confusion.

17.7.2 Distributed Conductor

TGxQcnd

This component models a rudimentary two-dimensional solid conduction path
with any number of steady point heat-flow connections to the positive or neg-
ative x ends of adjoining thermal solids and any number of steady distributed
connections to the positive or negative y faces. A typical use would be for an in-
termediate conduction path between a fixed-temperature heat source (sink) and
one of the subsequent heat-exchanger surface components. A thermal busbar,
if you will.

136 CHAPTER 17. THERMAL SOLIDS

The thermal solid domain now has an axial center-line temperature distri-
bution Ts(x), discretized on a spatial grid, beginning at the negative x end and
ending at the positive x end. It also has two additional discretized temperature
distributions Tn(x) and Tp(x), parallel to T (x), centered in the negative and
positive y faces. Axial (x directed) heat flux is given by

qx = ks
∂Ts

∂x
(17.5)

with ∂Ts

∂x being replaced by the finite-difference equivalent. Transverse (y di-
rected) heat flux at the negative and positive y faces are given by

qn = ks
Tn(x) − Ts(x)

D/2
(17.6)

and

qp = ks
Ts(x) − Tp(x)

D/2
(17.7)

where D is the solid depth in the y direction. The governing equation for
the interrelationship among qx, qn and qp is the heat-flow continuity equation
∇ · q = 0 which may be written in the form

∂qx

∂x
+
qp − qn

D
= 0 (17.8)

Actual heat flow per unit length in the y direction is either qnW or qpW , where
W is the solid thickness in the z direction. Actual heat flow in the x direction
is qxAs where As = WD is the cross-sectional area.

Distributed conductor variables are:

W : (real, m) Solid thickness in z direction. Increasing this dimension gives
more y heat flow for a given temperature drop.

D : (real, m) Solid depth D in y direction. Increasing this dimension gives less
y heat flow for a given temperature drop.

Solid : (enumerated) Solid material.

Mass : (real, Kg) Solid mass, provided for use in constraints in case it is part
of a reciprocating mass system.

QyNeg : (real, W) Net (x integrated) heat flow through negative y face.

QyPos : (real, W) Net heat flow through positive y face.

QxNeg : (real, W) Net heat flow through negative x end.

QxPos : (real, W) Net heat flow through positive x end.

AEQy : (real, W) Available energy loss to y directed heat flow, according to
internal generation formula (17.2).

17.7. HEAT CONDUCTORS 137

AEQx : (real, W) Available energy loss to x directed heat flow, according to
internal generation formula (17.2).

AEdiscr : (real, W) Available energy discrepancy of above two losses compared
to external generation as calculated by (17.1). (see section 17.3)

TsNeg : (real, K) Temperature Ts at negative x end.

TsPos : (real, K) Temperature Ts at positive x end.

The initial temperature distribution and length of a distributed conductor come
from the parent model component.

There is a variation of this component which inherits its conduction-path
cross-section area As and solid properties (Solid variable) from a parent com-
ponent. Cross sectional area typically comes from a variable like Asolid in a
canister component (see chapter 19) which may be either real or cubic-spline
valued. Solid z-thickness W then becomes a dependent variable according to

W = As/D (17.9)

W is either real or cubic-spline valued depending on the type of As in the parent.
D remains an independent input, although its value is irrelevant (provided non-
zero) if the component is used only to model axial heat flow (no y-face heat-flow
connections). Otherwise, D may be used to control the y temperature difference
for distributed heat flow, as described above.

17.7.3 Conductive Surface

TGxtQcnd

This component is similar to the previous distributed conductor except it also
allows a single time-varying distributed heat-flow connection from its positive
z face to the negative z face of a gas domain. In other words, the positive
z face models the wetted surface of a heat exchanger. The interior models a
conduction pathway to the ultimate source or sink, which may be connected
through either x end or y face. A typical use would be for a rectangular heat-
exchanger fin, although it is adaptable to any geometry. Like a distributed
conductor, a conductive surface inherits its initial temperature distribution and
length from a parent model component.

A conductive surface also inherits cross-section area As and wetted perimeter
Sx from its parent component, typically from variables Asec and Pwet in a heat-
exchanger component (see chapter 20), which may be either real or cubic-spline
valued. This information is translated into 2n rectangular solid domains of z-
thickness W and y depth D as shown in figure 17.1. W is a dependent variable
calculated as

W = As/Sx (17.10)

W is always a reasonable approximation of the parent heat exchanger wall thick-
ness. D is an independent input variable. The implied number of rectangular

138 CHAPTER 17. THERMAL SOLIDS

z
y

x

W (wall thickness)

qn

qz

qp

gas facing surface

D

D

W
gas facing surface

gas facing surface

fin base

flipped element

Sx (wetted perimeter)

L

Figure 17.1: For illustration purposes, a conductive surface morphed into heat
exchanger fins. The top picture corresponds to the basic thermal solid domain of
thickness W broken into 2n pieces of widthD (D is independent input variable).
In the bottom picture the individual pieces are re-arranged into n heat exchanger
fins, each of height D and thickness 2W . Only one fin is shown. The same one-
dimensional solution grid applies to all the fins together.

17.7. HEAT CONDUCTORS 139

domains is just the quotient of As and WD or

2n =
Sx

D
(17.11)

In the event the conductive surface represents rectangular fins n corresponds
to the fin number. The assumption is that these rectangular domains act in
parallel. The y-depth D is up to you. As you reduce D you are making y-
directed heat flow easier by effectively breaking the total wetted perimeter of
the heat-exchanger wall into more parallel segments, as illustrated in figure
17.1. Although this may seem complicated, most of the complexity is man-
aged internally, Your only responsibility is to enter the correct value for D,
the conduction-segment y-length, based on your understanding of the heat ex-
changer geometry.

In effect the heat flows a distance W/2 from z face to fin center through a
conductor of area LSx (wetted surface exposed to gas) then turns direction and
flows to either y face (or both if both connected) over distance D/2 through
a conductor of area L2nW = LAs/D (total fin cross section). For the spe-
cial case where you set D = W (wall thickness) the conductor area in the
y direction works out to LSx (same as z direction) and the total conduction
length is the wall thickness W , in effect modeling heat flow directly through
the heat exchanger wall. Then the z surface represents the inside tube sur-
face and the connected y face (either one but not both) represents the out-
side tube surface (see sample model HeatExchangers-ThermalConductors in the
Apps\SCFusion\Samples\ElementsThermoModels sub-directory under the instal-
lation directory).

Although the gas-surface heat flux may have a time-varying component,
only the steady component contributes to the interior solid solution. In other
words, the solid filters out any AC heat flow components, passing only the DC
component to the source or sink. This is appropriate where the net steady
component of gas-surface heat transfer dominates the time-varying component
— as in a heat rejector or acceptor. Otherwise, in a regenerator for example,
one of the quasi-adiabatic surface components might be more appropriate.

In the conductive surface the thermal solid domain has an axial temperature
distribution Tw(x) centered in the positive z face (serving all 2n fin faces of fin
morphing in figure 17.1), in addition to Ts(x), Tn(x) and Tp(x) as previously
described for the distributed conductor. Gas surface heat flux at the positive z
face is given by

〈qw〉 = ks
Ts(x) − Tw(x)

W/3
(17.12)

where W is the solid thickness in the z direction and 〈〉 symbolizes the time-
average operator. The equivalent conduction thickness is W/3 rather than W/2
because in a continuous-temperature solution the z-directed heat flux would
decrease linearly from the positive z-face to zero at the negative z-face, which
is insulated, branching off in the x or y directions within the solid. Under those
conditions the temperature is quadratic in the z direction and W/3 turns out

140 CHAPTER 17. THERMAL SOLIDS

to be the equivalent conduction length that gives the correct surface heat flux,
assuming that Ts is the section-average of the continuous temperature solution.

The equations for axial and transverse heat fluxes qx, qn and qp are the
same as those given previously for the distributed conductor, except that qx

includes a tortuosity factor as explained below. The governing equation for the
interrelationship among heat fluxes is again the heat-flow continuity equation
∇ · q = 0 which may now be written in the form

∂qx

∂x
+
qp − qn

D
+

〈qw〉
W

= 0 (17.13)

The y-directed heat fluxes qn and qp are always based on the total z thickness
As/D. The z-directed heat flux qw is always based on the total wetted perimeter
Sx. So, even if the parent geometry is not rectangular fins, the model continues
to make sense because variables As and Sx are always defined.

Because a conductive surface can represent the solid surface of a matrix-
type heat exchanger the axial heat flow qx is discounted by a possible tortuosity
factor fs < 1 (see section 20.0.1). Axial heat flow qx is calculated as

qx = −ksAe
∂Ts

∂x
(17.14)

where ks is solid conductivity and Ae is the effective solid conduction area. For
axially-uniform regenerator matrices, such as wrapped foil, Ae is just the mean
solid area As. For axially-irregular matrices like stacked screens, Ae is the mean
solid area reduced by a tortuosity factor fs to account for the small contact
areas between wires (see section 20.0.1). Sage does not apply the tortuosity
factor to thermal conduction in the z or y directions because the first generally
pertains to conduction normal to the surface of individual matrix particles and
the second pertains to bulk conduction out of the matrix perpendicular to the
flow direction, which may be along a continuous path (e.g. stacked screens in
plane of screens). If it is necessary to model some tortuosity in the y direction
you can always increase the D input.

Conductive surface variables are:

D : (real, m) Individual fin depth D. Often thought of as the fin conduction
length in a typical sectional view. In general, the conduction path length
(of one or more parallel segments) from the wetted surface of the heat-
exchanger wall to the point(s) where heat is added or removed at the outer
perimeter.

Solid : (enumerated) Solid material.

Mass : (real, Kg) Total solid mass, provided for use in constraints in case it is
part of a reciprocating mass system.

W : (real, m) Effective heat-exchanger wall thickness. Half the thickness of
a symmetrically-heated fin. In general, As/Sx, where cross-section As

and wetted perimeter Sx come from a parent model component. Spatial
average value if As and Sx are cubic-spline valued.

17.8. QUASI-ADIABATIC SURFACES 141

Tortuosity : (real, dimensionless) Mean (x average) solid axial conduction multi-
plier fs (see section 20.0.1). fsAs is the effective area Ae for thermal-solid
axial conduction (see equation (17.14)). So named because of the tortuous
solid conduction path in porous materials.

QwNet : (real, W) Net (t averaged and x integrated) heat flow through positive
z gas-facing surface.

QyNeg : (real, W) Net (x integrated) heat flow through negative y face.

QyPos : (real, W) Net heat flow through positive y face.

QxNeg : (real, W) Net heat flow through negative x end.

QxPos : (real, W) Net heat flow through positive x end.

AEQw : (real, W) Available energy loss to z directed gas-surface heat flow,
according to internal generation formula (17.2).

AEQy : (real, W) Available energy loss to y directed heat flow, according to
internal generation formula (17.2).

AEQx : (real, W) Available energy loss to x directed heat flow, according to
internal generation formula (17.2).

AEdiscr : (real, W) Available energy discrepancy of above three losses compared
to external generation as calculated by (17.1). (see section 17.3)

TsNeg : (real, K) Temperature Ts at negative x end.

TsPos : (real, K) Temperature Ts at positive x end.

17.8 Quasi-Adiabatic Surfaces

These thermal solids all presume the positive z surface is subject to time-varying
sinusoidal heat flux, with zero or near zero mean, usually as the primary surface
in contact with the gas within a regenerator or variable-volume space. Accord-
ingly they are born with a surface heat-flow connector, intended for connection
to a gas model component. The presumed zero-mean heat flow is where the
term quasi-adiabatic comes from.

Aside from that they are in many respects similar to the previous conductive
surface component. You may connect either x-end or y-face to other thermal
solids or heat sources via optional steady point or distributed heat-flow connec-
tions. But only the DC (steady) component of heat-flow passes through such
connections. You may also connect either x-end via optional time-grid heat flow
connections, which pass heat flow as a time grid. Time-grid connections impose
temperature continuity at each time node, rather than just time-mean temper-
ature continuity, which can be useful if the solid heat capacity is relatively low,
allowing large time-varying temperatures. Heat-flow connections are made via

142 CHAPTER 17. THERMAL SOLIDS

optional negative or positive heat-flow ends or faces available on the Thermal
Attachments page of the child-model creation palette.

As with a conductive surface the actual solid geometry, which may be an
extremely complicated porous structure, is shoe-horned into an equivalent rect-
angular solid based on the cross-section area As and wetted perimeter Sx in-
herited from the parent component. Independent input variable D defines the
effective depth for any y directed heat flows you may wish to model.

The thermal solid domain has an axial center-line temperature distribution
Ts(x, t) and a temperature distribution Tw(x, t) centered in the positive z face.
Both are discretized on a space-time grid, beginning at the negative x end and
ending at the positive x end. In support of y-directed heat flows there are also
two time-independent temperature distributions Tn(x) and Tp(x) centered in
the negative and positive y-faces, similar to those of a distributed conductor.
These are discretized on a separate spatial grid.

The governing equation for the thermal solid is now the time-dependent
energy equation ∂Es

∂t +∇ · q = 0 where Es is the volume-specific solid energy. If
we section-average this equation through the entire z depth of the solid we may
write it in the form

ρsAs
∂es

∂t
+
∂qx

∂x
+Qw +Qp −Qn = 0 (17.15)

where

As = mean solid cross section
es = mass-specific solid energy
qx = solid-mode axial heat flow
Qw = z surface heat transfer per unit length
Qp = positive y face heat flow per unit length
Qn = negative y face heat flow per unit length
ρs = solid density

The purpose of the solid energy equation is to determine Ts as an implicit
variable. Axial heat flow qx is based on the effective solid cross-section area Ae

(mean area As reduced by a tortuosity factor fs) the same as for a conductive
surface and is given by equation (17.14). The steady transverse (y directed)
heat flows per unit length at the negative and positive y faces are given by

Qn = (As/D) qn = (As/D) ks
Tn(x) − 〈Ts〉 (x)

D/2
(17.16)

and

Qp = (As/D) qp = (As/D) ks
〈Ts〉 (x) − Tp(x)

D/2
(17.17)

where D is the solid depth in the y direction, As/D is the total solid width in
the z direction (see section 17.7.3) and 〈〉 symbolizes the time average operator.
Note that for the same temperature difference the y directed heat flux varies
inversely with D2, according to the above equations. So it important to set the
value of D carefully when modeling y-directed heat flows.

17.8. QUASI-ADIABATIC SURFACES 143

For surface heat transfer Qw Sage uses a formulation involving the temper-
ature difference Ts − Tw , where Tw is understood as the surface temperature.
To obtain our formulation we must digress briefly into the exact temperature
solution in a solid layer subject to sinusoidal heat flux — more specifically, a
solid slab of thickness d, insulated at the face z = 0 and subject to heat flux
qz = eiωt at face z = d.

This is approximately what’s going on in a regenerator matrix, with the face
z = d corresponding to the gas-solid interface. Thickness d would represent foil
half-thickness, in the case of a foil matrix. In general, d is taken as the solid
volume divided by wetted surface. This is also approximately what’s going on
in the walls of a variable-volume space, so long as heat flows to and from the
wall with zero mean heat transfer, as is often the case.

In a complex formulation, the exact temperature field solving this problem
is

T = − δ

ks(1 + i)

cosh((1 + i)z/δ)

sinh((1 + i)d/δ)
eiωt (17.18)

where

δ =
√

(2α)/ω; thermal penetration depth
α = ks/(ρscs); thermal diffusivity

In particular, the complex temperature at the gas-solid interface (z = d) is

T w = T (d) = − δ

ks(1 + i) tanh((1 + i)d/δ)
eiωt (17.19)

with complex heat flow per unit length

Qw = −ksSx

(
∂T

∂z

)

w

= Sxe
iωt (17.20)

where Sx = As/d is wetted perimeter. The section-average temperature is

T s =
iδ2

2ksd
eiωt (17.21)

which is also the solution of our mean-parameter solid energy equation (17.15)
with ∂qx

∂x
= 0 and Qw = (As/d)e

iωt.
Writing the complex temperature difference T s − T w as ∆T , complex heat

flux may be formulated as

Qw =
ks

d
SxNs∆T (17.22)

where N s is a dimensionless number not unlike the Nusselt number of gas heat
transfer. Solving equation (17.22) for Ns and substituting the above solutions
(17.19), (17.20) and (17.21) for T w, Qw and T s gives

Ns =
2i(d/δ)2

(1+i)d/δ
tanh((1+i)d/δ)

− 1
(17.23)

144 CHAPTER 17. THERMAL SOLIDS

Interesting are the limiting cases for d/δ → ∞ (thick wall, high frequency, low
conductivity) and for d/δ → 0 (thin wall, low frequency, high conductivity).
These are

Ns =

{
(1 + i)d/δ if d/δ→ ∞
3 if d/δ→ 0

(17.24)

For thick solids, where thermal activity is confined to a layer roughly δ thick,
surface heat flux is phase-shifted 45 degrees ahead of temperature difference
∆T . For thin solids, where the entire solid is thermally active, there is no phase
shift.

In Sage models the surface heat flux is not necessarily sinusoidal. Depending
on the way the component is connected it may, for example, contain a steady
component, like the conductive surface of section 17.7.3. To account for this
possibility the physical heat flux is formulated as

Qw = 3
ks

d
Sx(∆T − <∆T) +

ks

d
Sx<(Ns∆T) (17.25)

The first term on the right-hand side represents the heat flux governed by the
steady heat conduction equation for an effective solid thickness of d/3, or equiv-
alently by the Ns value for the thin-wall limit of equation (17.24). The second
term represent the real part of the complex heat transfer according to equation
(17.22).

In this formulation the solved temperature difference ∆T (t) = Ts(t)−Tw (t) is
broken into a sinusoidal temperature variation <∆T plus a residual component
∆T − <∆T comprising the mean value plus higher harmonics. The sinusoidal
temperature variation is taken to be the real part of the complex temperature
variation calculated from the first harmonic cosine and sine coefficients a1 and
b1 of the Fourier-series expansion of temperature difference outlined in section
8.5.2.

It is not Qw that is solved from ∆T in equation (17.25) but, rather, the other
way around. Sage solves ∆T implicitly, considering heat flux Qw as given.

There are quasi-adiabatic model components for N s computed rigorously,
according to equation (17.23), as well as the thick- and thin-wall approximations
according to (17.24). They all descend from a common ancestor which has the
following variables:

Kmult : (real, dimensionless) Empirical multiplier for axial conduction qx.

D : (real, m) Effective solid-conduction distance between the center line and
the surface where any y face heat flow is extracted. The value of D only
matters when there is a distributed heat-flow connection made at either y
face.

Solid : (enumerated) Solid material.

Mass : (real, Kg) Solid mass, provided for use in constraints in case it is part
of a reciprocating mass system.

17.8. QUASI-ADIABATIC SURFACES 145

Dskin : (real, m) Skin thickness d in z direction, calculated as solid volume
divided by wetted perimeter (As/Sx).

Lambda : (real, m) Mean thermal wavelength λ in z direction, calculated as
(2π
√

2α/ω).

Tortuosity : (real, dimensionless) Mean (x, t average) solid axial conduction
multiplier fs (see section 20.0.1). fsAs is the effective area Ae for thermal-
solid axial conduction (see equation (17.14)). So named because of the
tortuous solid conduction path in porous materials.

FQwNet : (Fourier series, W) Net (x integrated) heat flow through positive z
gas-facing surface.

QxNeg : (real, W) Net heat flow through negative x end.

QxPos : (real, W) Net heat flow through positive x end.

AEQw : (real, W) Available energy loss to z directed gas-surface heat flow,
according to internal generation formula (17.2).

AEQx : (real, W) Available energy loss to x directed heat flow, according to
internal generation formula (17.2).

AEdiscr : (real, W) Available energy discrepancy of above two losses compared
to external generation as calculated by (17.1). (see section 17.3)

TsNeg : (real, K) Temperature Ts at negative x end.

TsPos : (real, K) Temperature Ts at positive x end.

FTsMean : (Fourier series, K) Spatial averaged (x average) temperature Ts.

Length l, cross sectional area As, z surface wetted perimeter Sx and initial
temperature distribution Ts all come from the parent model component.

Prior to Sage version 12 (July 2021) the factor ∂es

∂t
in equation (17.15)

was approximated as 〈cs〉 ∂Ts

∂t , where 〈cs〉 was the solid heat capacity at the

time-mean temperature 〈Ts〉. The reason for this was that evaluating ∂es

∂t di-

rectly as cs
∂Ts

∂t
would not have been in energy-conserving form because factor

cs is not time-constant. Numerical differencing errors would not have canceled
out, resulting in imperfect energy conservation over the cycle period. The ap-
proximation 〈cs〉 ∂Ts

∂t was reasonable for solid components with relatively small
cyclic temperature variations and where solid heat capacity did not vary much
in that temperature range. But, neither assumption is valid for regenerator
matrices operating below 10 K. So starting with version 12, ∂es

∂t is computed

by evaluating es(Ts) at each time node as es(Ts) =
∫ Ts

T0
csdT , directly from the

cubic-spline property functions that define the specific heat. This formulation
embeds the effect of time-varying cs within the time derivative and therefore

146 CHAPTER 17. THERMAL SOLIDS

is in energy-conserving form. Integration limit T0 is arbitrary so long as it is
constant over the time cycle. It is convenient to use the time-mean tempera-
ture T0 = 〈Ts〉 at each spatial node where the equation is applied because that
minimizes the computational work required to calculate es(Ts).

Also, the complex temperature variation was defined differently (see section
8.5.2) with the potential for errors between the relationship between Qw and ∆T
for solutions with large higher-harmonic content. This was a problem in low-
temperature GM-style pulse-tube cryocooler models where solid heat capacities
were very low, leading to erratic convergence and invalid solutions. The present
formulation attempts to correct this problem to the extent possible in a 1-D
solution.

17.8.1 Thick Surface

TGxtThkWall

This quasi-adiabatic surface presumes the skin thickness d is much larger than
the thermal wavelength λ. It is intended for modeling something like a thermally
massive cylinder space wall, where the time-varying heat flux is confined to a
thin layer near the surface.

17.8.2 Thin Surface

TGxtThnWall

This quasi-adiabatic surface presumes the skin thickness d is much smaller than
the thermal wavelength λ. It is intended as a fast alternative to the following
rigorous surface for modeling something like a regenerator matrix when the wire
diameter, particle size, foil thickness, or whatever, is very small. If you use this
component, you should check that output variable Dskin is indeed smaller than
Lambda. If not, then you should use the rigorous surface component instead.

17.8.3 Rigorous Surface

TGxtMedWall

This quasi-adiabatic surface presumes the skin thickness d is on the same order
as the thermal wavelength Lambda. It is intended for modeling any sort of
regenerator matrix or duct wall, although the slightly-faster thin-surface model
component may be justified for finely divided matrices. A rigorous surface calcu-
lates the Nusselt-like number Ns from equation (17.23) which takes a bit more
time than the thick- or thin-surface approximations.

Chapter 18

Gas Domains

The gas-domain model components are at the heart of the SCFusion model class.
Because of their complicated mathematical structure, they are also the most
time consuming to solve and prone to convergence problems. From your point
of view, they appear simply as palette-created child model components within
heat-exchanger geometries. There are gas-domain variations for all of the basic
types of fluid flow: duct flow, porous matrix flow and flow into a variable-volume
space (formed by a piston in its cylinder) through an inlet. All gas domains are
born with a thermal boundary connector intended for connection to a thermal
solid of your choice. Gas domains, being one dimensional, admit to flow connec-
tions with other gas domains at either their positive or negative ends. Since you
may want to have flow connections at only one end, at both ends, or multiple
connections at one end, flow connectors are palette-created child-model com-
ponents. Variable-volume gas domains have palette-created displaced-volume
connectors intended for connection to area faces of moving parts.

There remains one more gas-domain connection: the charge line. Exactly one
gas domain model component must have a charge-line connection to a pressure-
source component to establish the amount of working gas in the sum-total of all
interconnected gas domains. This is very important. Without a pressure-source
connection there will be no way for Sage to determine the amount of working
gas in your system and solving will not converge. Charge-line connectors are
palette created because there is no way for Sage to decide which gas component
should get it.

18.1 Attachment Child Components

All gas domains have the ability to produce child model components represent-
ing charge-line connectors and flow inlets. Some can also produce volumetric
displacements.

When you drop a gas domain model component from the SCFusion palette
into the edit form, it starts out with only a thermal connector arrow, intended for

147

148 CHAPTER 18. GAS DOMAINS

connection to a thermal solid component. In order to make additional connec-
tions, you must first drop in one or more of the following child model components
from the palette.

Icon Purpose

gas charge line

negative gas inlet

positive gas inlet

time-ring negative-facing volume displacement

time-ring positive-facing volume displacement

When you drop one of these into the edit form, it is born with a connection
arrow which you can then move up one level to the parent-component page of
the edit form for connection there to a mate, perhaps originating in another gas
domain.

The gas charge line is for connection to a pressure-source component. It is
required for exactly one gas domain component in your total interconnected gas
domain, as explained above.

The two types of gas inlets are for connection to other gas domains as you
see fit. Generally you will want zero or one flow inlets at each end, depending
on whether your component is functioning as a dead-ended passage or through
passage. In some instances you will create two (or more) flow inlets at the end
of a gas component which enables it to act as a T or Y component.

The volume displacements are available only in variable-volume gas domains.
They are intended for connection to area faces of moving parts like the recipro-
cator or constrained piston components documented in chapter 16.

18.2 Coordinate Conventions

A gas domain may be thought of as a one-dimensional rectangular region like
this:

18.3. ENTROPY GENERATION 149

- x

6

z

�
��

y

((((((((((((((((((((((

�
�

�
�

�
�

�
�

�
�

�
�

((((((((((((((((((((((

6 6 6

q(x, t)

-ṁ(t)

Gas flow ṁ(t) may pass through either the positive or negative x boundaries,
but nowhere else. Heat flux q(x, t), generally to a thermal solid, may pass
through the negative z boundary, but nowhere else. Discretization is in the x
direction only, similar to a thermal solid. In principle, the cross-sectional area
may vary with x, as drawn. It may even vary with time, as if the upper z surface
were moving in accordance with a volume displacement.

18.3 Entropy Generation

Gas domains involve the conduction of heat across finite temperature differences
as well as irreversible flow processes. Both generate entropy (see chapter 14).

The second law of thermodynamics applied to the external surface of our
gas domain, over a full periodic cycle is

External Entropy Generation =

∮

dt

∫

ds

n · q
T

+

[∮

dt

ṁs

]x=b

x=a

(18.1)

where n · q and T are the z-surface normal heat flux and absolute temperature,
and ṁ and s are the x-end mass flow rate and mass-specific entropy. The [·]x=b

x=a

notation means the difference of the enclosed expression evaluated a the two
endpoints. Entropy generation defined this way refers to the increase in entropy
in the universe surrounding the gas domain as a result of internal irreversibilities.

There are two internal entropy generating mechanisms, heat flow and viscous
friction. There are actually two distinct heat-flow mechanisms, axial conduction
and film heat transfer, but at this level of generality the entropy generated by
either is covered by the formula

Conductive Entropy Generation = −
∮

dt

∫

dv

q · ∇T
T 2

(18.2)

150 CHAPTER 18. GAS DOMAINS

where the integrand is the local rate of entropy production due to heat flow
in a temperature gradient. And the entropy generation of viscous friction, in
one-dimensional flow, may be calculated as

Viscous Entropy Generation = −
∮

dt

∫

dx

uAF

T
(18.3)

where uA is volumetric flow rate and F represents that part of the pressure
gradient due to viscous friction. The numerator in the integrand is the pumping
dissipation per unit length.

Entropy generations are presented as available-energy outputs by multiply-
ing the entropy integrals by Tnorm, the normalization temperature of the root
SCFusion model component. Each model component evaluates its entropy inte-
grals in a manner appropriate to the physics and solution-variable discretization
embodied within it.

18.4 Pressure Source Component

TStdyPsrc

The pressure source component establishes the charge pressure for your SCFu-
sion model. You must have exactly one pressure source, connected to some gas
domain. A pressure source acts as an infinite isobaric gas reservoir. Its only
variable is

Pcharge : (real, Pa) Charge pressure.

The result of connecting a pressure source to a gas domain is that the density in
the gas domain adapts itself so that t average pressure is continuous across the
connection — so that the time-average pressure at the negative end of the gas
domain becomes Pcharge. This is explained mathematically in section (18.6).

18.5 Gas Domain Components

There are three distinct variations of gas domains, distinguished primarily by the
method by which they track the onset of turbulence. They all come with a large
assortment of variables, mostly outputs, sufficient for most of your needs but not
too numerous to unduly clutter your output listings. For more information you
can always dump the solution grid with the File|Save Solution Grid command.
The following list includes all possible variables in all types of gas domains. Some
variables may be missing from individual gas domains, depending on what makes
sense. Mathematical symbols, as yet undefined, will be found in the subsequent
sections on theory at the end of this chapter.

Fmult : (real, dimensionless) Empirical multiplier for viscous pressure drop F .

Hmult : (real, dimensionless) Empirical multiplier for z-surface heat transfer
Qw.

18.5. GAS DOMAIN COMPONENTS 151

Kmult : (real, dimensionless) Empirical multiplier for axial conduction q in
domain interior.

KmultBnd : (real, dimensionless) Empirical multiplier for axial conduction q at
domain endpoints. Default is 0 which blocks thermal conduction between
gas domains. Set to 1 in both gas domains on either side of a flow connector
to allow continuous thermal conduction across the flow connector.

UpwindFrac : (real, dimensionless) The relative weight factor for upwind influ-
ence in density (temperature) interpolation between control volumes in
the computational grid (see section 18.6.7). Increasing the value will help
smooth out a jagged axial temperature profile at some cost in reduced
accuracy. Based on computational experiments, the default of 1.0E-2 pro-
vides sufficient stability for almost all situations with a negligible effect on
accuracy. In the event of temperature instability (which you can see by
plotting a file of computational solution variables), increasing the value to
1.0E-1 should stabilize almost any gas domain. Poor convergence may be
a sign of temperature instability. Inputs are restricted to the range zero
to one.

Klocal : (real, dimensionless) Local frictional pressure-drop loss coefficient K
(see equation (18.18). Used for including entrance, exit and bend effects
only in duct-type gas domains.

TbInNeg : (real, dimensionless) Incoming relative turbulence T at the positive
end of a duct-type gas domain. The default is 1, corresponding to a sharp
entrance where flow separation is expected or the upstream turbulence
level is high. A value of 0 implies completely smooth incoming flow corre-
sponding to a continuous flow area or a perfectly diffused transition and
low upstream turbulence level.

TbInPos : (real, dimensionless) Like TbInNeg except at the duct-gas negative
end.

FQcombust : (Fourier series, W) Combustion firing rate as a function of time.
Available as an input variable only in the combustion-space gas component
within a generic-cylinder component. It directly determines the combus-
tion heating term Qc in the gas energy equation. (see section 18.6.3).

PV : (Fourier series, W) Net (x integrated) PV power output (
∫

dx
P ∂A

∂t
). Avail-

able only in variable-volume gas domains where flow area A is a function
of time. The mean value is the t-average PV power which most people
think of when they think of PV power. A positive value indicates work
done by the gas on the walls. The higher harmonics are available if you
are interested.

FQwNet : (Fourier series, W) Net (x integrated) heat flow through negative z
solid-facing surface (positive is from solid to gas).

152 CHAPTER 18. GAS DOMAINS

HNeg : (real, W) t average stagnation enthalpy flow through negative x in-
let. Stagnation enthalpy uA(ρe+ P) includes all forms of energy flow —
internal, PV and kinetic.

HPos : (real, W) t average stagnation enthalpy flow through positive x inlet.

PVNeg : (real, W) Approximate t average PV power flow through negative x
inlet. Not to be used for strict energy balance calculations. See section
18.6.5.

PVPos : (real, W) Approximate t average PV power flow through positive x
inlet.

QNeg : (real, W) t average axial heat flow q through negative x inlet.

QPos : (real, W) t average axial heat flow q through positive x inlet.

AEfric : (real, W) Available energy loss to viscous flow friction, according to
internal generation formula (18.3).

AEQw : (real, W) Available energy loss to z directed solid-surface heat flow,
according to internal generation formula (18.2).

AEQx : (real, W) Available energy loss to x directed heat flow, according to
internal generation formula (18.2).

AEdiscr : (real, W) Available energy discrepancy of above losses compared to
external generation as calculated by (18.1). (see section 18.3)

QwNeg : (real, W/m) t average heat flow per unit length through negative z
solid-facing surface, at negative x end. Gives insight into surface heat flow
distribution.

QwPos : (real, W/m) Same as QwNeg except at positive x end.

QxMean : (real, W) t and x averaged axial heat flow q.

TNeg : (real, K) t average temperature T at negative x end.

TPos : (real, K) t average temperature T at positive x end.

Vmean : (real, m3) Gas domain volume. Provided for fixed as well as time-
varying volumes, although in that case Vmean is the t average volume.
See also: FV for variable-volume gas domains.

FTMean : (Fourier series, K) Spatial averaged (x average) temperature T .

FPMean : (Fourier series, Pa) Spatial averaged (x average) pressure P .

FPNeg : (Fourier series, Pa) Pressure P at negative boundary.

FPPos : (Fourier series, Pa) Pressure P at positive boundary.

18.5. GAS DOMAIN COMPONENTS 153

FDP : (Fourier series, Pa) Pressure difference across domain (positive − nega-
tive x ends).

FV : (Fourier series, m3) Domain volume for a variable-volume gas domain.
The mean value (t average) and first harmonic are generally of the most
interest.

FM : (Fourier series, kg) Total mass in a gas domain. The sum of all mean
values (t averages) over all gas domains is the total gas mass in the system.
The time derivatives of the first and higher harmonics are theoretically the
same as the difference of inlet mass flow rates (FRhoUAPos - FRhoUANeg).
But due to inaccuracies of finite time-differencing, this is exact only for the
first harmonic and in the limit of large time nodes for higher harmonics.

FHmean : (Fourier series, W) Spatial averaged (x average) stagnation enthalpy
flow uA(ρe+ P).

FRhoUAmean : (Fourier series, kg/s) Spatial averaged (x average) mass flow
rate ρuA.

FRhoUANeg : (Fourier series, kg/s) Mass flow rate ρuA through negative x
inlet.

FRhoUAPos : (Fourier series, kg/s) Mass flow rate ρuA through positive x inlet.

MachMean : (real, dimensionless) t and x averaged Mach number.

TdMean : (real, dimensionless) Tidal amplitude divided by length L. Tidal
amplitude is the oscillatory amplitude of the mean fluid displacement. It
is calculated as 〈u〉1 /ωL where 〈u〉1 is the amplitude of the first harmonic
(fundamental) of the Fourier series decomposition of x-average section-
mean velocity u. Only available in duct or matrix gas domains.

ReMean : (real, dimensionless) t and x average Reynolds number Re in matrix
or duct gas domains or turbulent Reynolds number Rt in variable-volume
gas domains.

VaMean : (real, dimensionless) t and x averaged Valensi number Va in duct gas
domains.

TbMean : (real, dimensionless or J/m3) t and x averaged relative turbulence
T in duct gas domains or turbulence intensity ρκ in variable-volume gas
domains.

ZMean : (real, dimensionless) t and x averaged gas compressibility P/(ρRT) as
returned by the gas property variable Gas selected in the SCFusion root
component. This is always one for an ideal gas.

154 CHAPTER 18. GAS DOMAINS

EOSErrMean : (real, dimensionless) t and x averaged equation of state relative
error as returned by the gas property variable Gas selected in the SCFusion
root component. This is always zero except for the deprecated Redlich-
Kwong gas class.

Coming from the parent component are the length L, mean flow area A, wetted
perimeter Sx, initial axial temperature distribution T (x) in the form of a cubic
spline variable and working gas (properties).

A primary purpose of a gas domain is to calculate the empirical relation-
ships for friction factor f , Nusselt number Nu and axial conductivity ratio Nk

appropriate for the flow geometry in which it finds itself (see section (18.6).
Accordingly, there is a gas-domain variation for each individual type of heat
exchanger geometry. But they all fit into one of the following three classes.

18.5.1 Matrix Gas Domains

TGxt...MtxGas

A matrix gas domain is used within a porous matrix or within uniform channels
of tiny hydraulic diameter. A matrix gas domain knows about Reynolds number,
defined as

Re =
ρ|u|dh

µ
(18.4)

where u is mean-flow velocity and dh is hydraulic diameter defined as

dh =
4A

Sx
(18.5)

It also knows about matrix porosity, which is a variable imported from the
parent component.

Wetted perimeter is the wetted surface area per unit length. The notation
Sx is shorthand for ∂S

∂x , where S(x) is the cumulative wetted surface between po-
sition zero and x. For domains where S varies linearly with x, wetted perimeter
is just the total wetted surface divided by domain length.

18.5.2 Duct Gas Domains

TGxt...DctGas

A duct gas domain is used within relatively short flow ducts (generally tubes
or rectangular channels) with not so tiny hydraulic diameters. A duct gas do-
main knows about Reynolds number, Valensi number and turbulence intensity.
Reynolds number Re is defined as in equation (18.4). Valensi number is

Va =
ρωd2

h

4µ
(18.6)

It is related to the ratio of hydraulic diameter to viscous penetration depth
δν =

√

2µ/(ωρ)) according to

dh/δν =
√

2Va (18.7)

18.6. GAS DOMAIN THEORY 155

Turbulence intensity T is discussed in detail in section 18.8. Duct domains
also know about aspect ratio, which is a variable imported from the parent
component. And they introduce the local-loss pressure-drop coefficient K (input
variable Klocal), used in frictional pressure-drop equation (18.18).

18.5.3 Variable-Volume Gas Domains

TGxtGnrCyl-
Gas

A variable-volume gas domain is used within the generic-cylinder model compo-
nent for modeling piston-cylinder spaces of SCFusion models — i.e. the volume
between the pistons and the cylinders in which they ride. A variable-volume gas
domain knows about turbulent Reynolds number and Valensi number. Valensi
number Va is the same as in equation (18.6) and turbulent Reynolds number Rt

is defined in section 18.8. Flow area A is no longer constant. Rather, it varies
with time in accordance with palette-generated volume displacements connected
to the area faces of moving-part components.

18.5.4 Combustion-Space Gas Domains

TGxtCmbCyl-
Gas

A combustion-space gas domain is alternative to the above variable-volume gas
domain, also available within the generic-cylinder model component. It is in-
tended for modeling internal-combustion spaces in a simplified way. Input vari-
able FQcombust specifies the combustion firing rate independently of fuel or air
flow rates or combustion chemistry. You are responsible for ensuring the con-
ditions for combustion are actually met. The combustion firing rate directly
determines source term Qc in the gas energy equation (see section 18.6.3)).

Combustion heating is modeled as a completely reversible process that does
not involve entropy generation. It is perfectly feasible to specify a negative firing
rate, in which case it amounts to a reversible cooling process.

As a software object, this component descends from the above variable-
volume gas domain. This means it inherits all of the physics of the variable-
volume gas domain in regard to turbulent Reynolds number, etc.

18.6 Gas Domain Theory

The following equations are somewhat nonstandard in the computational fluid
dynamics literature because they are designed specifically for one-dimensional
internal flows with space- and time-variable flow area. Most CFD textbooks
take a more general world view. So, rather than just quote the equations, we
are forced to do a bit of derivation — as concisely as possible. Our starting
point is the general Navier-Stokes equations in integral form, as found in Peyret
and Taylor [48], except that we shall neglect body forces and relax the prevailing
convention that control volume v be fixed. We shall assume that v has fixed
inlet and exit boundaries, but allow moving side boundaries — time-variable
flow area. The side boundaries are impermeable so that flow enters and leaves
only through the inlet and exit boundaries. A rubber tube with space- and

156 CHAPTER 18. GAS DOMAINS

time-variable cross section is a useful thought picture. The principle flow axis
is the tube axis. In this control volume the integral gasdynamic equations are:

continuity
d

dt

∫

v

ρ dv +

∫

s

ρn · V r ds = 0 (18.8)

momentum
d

dt

∫

v

ρV dv +

∫

s

[(n · V r)ρV − nσ]ds = 0 (18.9)

energy
d

dt

∫

v

ρe dv +

∫

s

n · (ρeV r − σV − q) ds = 0 (18.10)

where

e = ε+ u2/2; mass-specific total gas energy
n = unit outward normal of s
q = heat flux vector
s = surface of v
t = time
v = control volume
V = Newtonian-frame flow velocity vector
V r = boundary-relative flow velocity vector
ε = mass-specific internal gas energy
ρ = gas density
σ = stress tensor

The continuity equation states, in English, that the time rate of change of
mass in the control volume equals the rate at which mass leaves through its
surface boundaries. By definition, n · V r is zero along the side surfaces, so the
mass enters and leaves only through the inlet and exit boundaries.

The momentum equation is a statement of Newton’s second law of motion
— the time rate of change of control-volume momentum, less the momentum
leaving through its surface boundaries, equals the net force acting on all surfaces.
We must be a bit more careful here because momentum (velocity) must be
measured in reference to a fixed Galilean frame for Newton’s second law to be
valid. So the “V ” in ρV must continue to be absolute, not relative velocity.
We will keep this distinction in mind but, fortunately, it will not affect us much
because it applies only to the transverse velocity components (associated with
converging, diverging or moving side boundaries) and we are necessarily ignoring
transverse components in the momentum equation in a one-dimensional model.

The energy equation states that the time rate of change of control-volume
internal plus kinetic energy, less that leaving through its surface boundaries
equals the net heat flux through its boundaries plus the mechanical work done
on its boundaries. Mechanical work, like momentum, must be measured in an
inertial frame so the “V ” in the tensor product σV must also remain absolute,
not relative.

18.6. GAS DOMAIN THEORY 157

((((((((((((((((((((((

x x+ dx

PA - PA �

P dA -

FA�

Figure 18.1: Axial surface forces
∫

s
−Nσ resolved into pressure and empirical

flow-friction terms

We now convert our equations to one-dimensional differential equations in
conservative form.

In all equations we replace dv in the time integrals with Adx, where A is flow
area and x is the principle flow direction, take the limit as ∆x→ dx then divide
through by dx. For example, the term d

dt

∫

v
ρ dv in the momentum equation will

transform to ∂
∂t

(ρA), and so forth.
For the surface integrals, we must consider the inlet and outlet boundaries

separately from the side boundaries on a case-by-case basis.

Continuity Equation Surface integral
∫

s
ρn · V r ds in the continuity equa-

tion, after taking the limit as ∆x → 0 and dividing out dx, becomes ∂
∂x(ρuA),

where u is mean-flow velocity in the x direction.

Momentum Equation Surface integral
∫

s
(n · V r)ρV ds in the momentum

equation becomes, simply, ∂
∂x

(uρuA) because there is no momentum flux through
the side boundaries.

Integral
∫

s
−nσds, representing the forces applied to the surface, is more

involved. Straight off, since this is a one-dimensional model, we will empiricise
the stress tensor σ into thermodynamic pressure P and a viscous flow resistance
term F which we may think of as the force per unit length per unit flow area
due to surface shear stress. F amounts to a frictional pressure gradient. Then,
pressure forces on the inlet and exit boundaries transform to ∂

∂x(PA)−P ∂A
∂x =

A∂P
∂x . Viscous forces on the side boundaries transform into just −FA. The

sketch in figure 18.1 may help make this clear:

Energy Equation Surface integral
∫

s
n · (ρeV r)ds in the energy equation

becomes, simply, ∂
∂x

(uρeA) because there is no energy flux through the side

158 CHAPTER 18. GAS DOMAINS

((((((((((((((((((((((

x x+ dx

uPA - uPA -

P ∂A
∂t dx ?

Figure 18.2: Surface work
∫

s
−n · σV resolved into pressure terms

boundaries.
Integral

∫

s
−n·σV ds for the inlet and exit boundaries transforms to ∂

∂x
(uPA).

No F term is involved since F is applied to the side walls. For the side walls the
integral transforms to P ∂A

∂t , the PV work done on the wall. ∂A
∂t derives from

the transverse velocity component of the moving walls. Once again, there is no
F term. The reason is because axial velocity is zero at the walls where F is
applied. See figure 18.2:

Integral
∫

s
−n · qds transforms to a term ∂

∂x
(qA) for the end boundaries,

where q is axial heat flux. For the negative z boundary we introduce empirical
film heat transfer per unit length Qw to represent the integral.

In terms of these simplifications our equation set becomes:

continuity
∂ρA

∂t
+
∂ρuA

∂x
= 0 (18.11)

momentum
∂ρuA

∂t
+
∂uρuA

∂x
+
∂P

∂x
A − FA = 0 (18.12)

gas energy

∂ρeA

∂t
+ P

∂A

∂t
+

∂

∂x
(uρeA + uPA+ q) −Qw = 0 (18.13)

The purpose of these gasdynamic equations is to determine three implicit solu-
tion variables, which we hereby choose to be ρ, ρuA and ρe. The reason for this
choice is that all are roughly continuous across area discontinuities and, except
for the factor A in the second, are standard in the field. Empirical terms F , Qw

and q are explained further below.

18.6. GAS DOMAIN THEORY 159

Steady Flow Case

Sage can simulate steady-flow thermodynamic cycles like Joule-Thomson cooling
or vapor-compression refrigeration by setting the number of time nodes to zero
(i.e. root-model input NTnode = 0). This forces all time-derivatives in the
previous equations to vanish leaving a simplified set of equations:

steady continuity

∂ρuA

∂x
= 0 (18.14)

steady momentum

∂uρuA

∂x
+
∂P

∂x
A − FA = 0 (18.15)

or alternately

∂P

∂x
+

1

2
ρ
∂u2

∂x
= F (18.16)

steady gas energy

∂

∂x
(uρeA + uPA+ q) −Qw = 0 (18.17)

According to the steady continuity equation mass flow rate ρuA must be con-
stant. But velocity u can vary with position if density ρ varies, which it typically
does if P or T vary. The alternate steady momentum equation results from re-
placing ∂uρuA

∂x
with ρuA∂u

∂x
+ u∂ρuA

∂x
and noting that the second term vanishes

according to the steady continuity equation. Factoring out A and simplifying
results in a variation of Bernoulli’s law, accounting for flow friction.

18.6.1 Viscous Pressure Gradient F

The term F in the momentum equation takes the place of the viscous terms in
the Stokes stress tensor, which cannot be resolved directly in a one-dimensional
model. The units of F are force per unit length, per unit flow area (same as
∂P
∂x). F may be formulated in terms of Darcy friction factor f and total local
loss coefficient K in a heat exchanger of hydraulic diameter dh and length L as:

F = − (f/dh +K/L) ρu|u|/2 (18.18)

Friction factor may be calculated as an empirical function of instantaneous
local flow conditions, according to some published correlation. Loss coefficient
is generally a fixed constant, equal to the sum of local loss coefficients for sharp-
edged area changes, bends, etc.

160 CHAPTER 18. GAS DOMAINS

Complex Formulation for Ducts

In the case of laminar flow in duct gas domains (see section 18.5.2), Sage allows
for a phase shift between viscous pressure gradient and velocity by formulating
F in terms of a complex wall-shear-stress function s = sr + isi instead of a
conventional friction factor. The following formulation applies this complex
formulation to the sinusoidal component of the velocity and also accounts for
the contribution of any steady (DC) velocity that may be present:

F = −(K/L)ρu|u|/2− (8µ/d2
h)sr0(u− <u) − (8µ/d2

h)<(su) (18.19)

Here, µ is viscosity and sr0 is the steady-flow limit for sr . The factor 8µ/d2
h

may also be written 2ρω/Va. The first term on the right is a smeared-out local-
loss per unit length carried over from the previous formulation. The last two
terms amount to the superposition of the frictional pressure gradient solutions
for a laminar steady-flow momentum equation and an laminar oscillating-flow
momentum equation. Both equations are linear in u, so the superposition is
valid.

In this formulation Sage’s section-mean velocity u(t) is broken into a sinu-
soidal variation <u plus a residual component u − <u comprising the mean
value plus higher harmonics. The sinusoidal component is calculated from first-
harmonic cosine and sine coefficients a1 and b1 of the Fourier-series expansion
of section-mean velocity, according to the technique outlined in section 8.5.2.

The oscillating-flow wall-shear-stress function s is not a standard concept
like friction factor. It is defined in reference [13], for incompressible laminar
flow between parallel plates, as −f

′
wall/ 〈f〉 where f is the complex velocity

profile function (u(y) = f(y)eiωt). For other channel shapes, it can be related
to the somewhat more standard fν functions used in thermoacoustic theory [65]
using

s =
iVa

2

(
fν

1 − fν

)

(18.20)

Both s and fν are functions of Valensi number, or, as thermoacoustic practition-
ers prefer to say, functions of the ratio of some characteristic channel dimension
to viscous penetration depth. (Viscous penetration depth is δ =

√

2µ/(ρω),
which is related to Valensi number by

√
2Va = dh/δ.)

The steady-flow (low-Va) limit sr0 is related to the conventional Darcy fric-
tion factor by

f =
16sr0

Re
(18.21)

In other words, 16sr0 is the constant factor that appears in the numerator of
the laminar friction factor correlation. This relation can be used to cross-check
s calculations against the laminar steady-flow friction-factor literature.

18.6.2 Film Heat Transfer Qw

The term Qw in the energy equation is the heat flow per unit length, through
the negative z surface, due to film heat transfer. The normal way to formulate

18.6. GAS DOMAIN THEORY 161

this is
Qw = hSx(Tw − T) = Nu(k/dh)Sx(Tw − T) (18.22)

where Nu is a Nusselt number, k is gas conductivity, dh is hydraulic diameter, Sx

is the wetted perimeter (wetted surface area per unit length) and Tw − T is the
temperature difference between the negative z surface and section-average. This
is appropriate for heat transfer in phase with the film temperature difference.
Matrix gas domains (see section 18.5.1) use this approach.

Complex Formulation for Cylinders

Variable-volume gas domains (see section 18.5.3), allow for a phase shift between
heat transfer and film temperature difference by using a complex Nusselt number
formulation

Qw = (k/dh)Sx [Nu0(∆T −<∆T) + <(Nu∆T)] (18.23)

In this formulation the solved gas-wall temperature difference ∆T (t) = Tw(t)−
T (t) is broken into a sinusoidal temperature variation <∆T plus a residual com-
ponent ∆T −<∆T comprising the mean value plus higher harmonics. The sinu-
soidal component is calculated from first-harmonic cosine and sine coefficients
a1 and b1 of the Fourier-series expansion of ∆T , according to the technique
outlined in section 8.5.2.

The complex-valued Nusselt number Nu (section 20.9) generally comes from
some linear time-varying laminar theory [38]. In such theory the factor (1/dh)Nu∆T

in equation (18.23) is just the normal temperature gradient (∂
∂y) at the wall for

the time-varying components of the theoretical temperature solution ∆T . The
factor (1/dh)Nu0(∆T−<∆T) is the normal temperature gradient of steady-flow
theory applied to the residual temperature difference. Sage presumes the two
temperature gradients are additive. Applying Nu0 to the steady component of
∆T − <∆T makes sense, but applying it to the higher-harmonic content does
not. The only justification for doing so is that otherwise heat transfer would
not depend on those higher harmonics, which might lead to convergence issues
because of indeterminate temperature values. Complex Nusselt numbers have
a significant imaginary component only for high Valensi number laminar flows,
when hydraulic diameter is large compared to thermal penetration depth. In
this case, the quantity (k/dh)Sx<(Nu∆T) in equation (18.23), which represents
the physical component of the complex heat flow per unit length, may be phase
shifted ahead of ∆T by as much as 45 degrees. For turbulent flows or for low
Valensi numbers the complex heat-flow formulation essentially reduces to the
conventional real formulation (18.22).

Typical complex Nusselt number theories assume the wall temperature Tw

is constant so the heat transfer formulation (18.23) is not quite right when
the variation in Tw is significant. Even so, equation (18.23) is the preferred
Sage formulation because it produces reasonable results in the case where the
bounding wall is very thin or has very low specific heat. In that case the heat
transfer Qw is limited by the wall heat capacity, which may approach zero

162 CHAPTER 18. GAS DOMAINS

(insulated surface) in extreme cases. In those cases ∆T and ∆T both approach
zero according to equation (18.23).

Prior to Sage version 12 (July 2021) the complex temperature variation
was defined differently (see section 8.5.2) with the potential for errors between
the relationship between Qw and ∆T for solutions with large higher-harmonic
content. This was a problem in low-temperature GM-style pulse-tube cryocooler
models where solid heat capacities were very low, and led to erratic convergence
and invalid solutions. The previous formulation also presumed the wall tem-
perature Tw was constant, a bad assumption in such cryocoolers. The present
formulation attempts to correct both these problems to the extent possible in a
1-D solution.

Complex Formulation for Ducts

Duct gas domains (see section 18.5.2), attempt to improve upon the complex
formulation by breaking the fluctuating complex temperature difference ∆T =
T w −T into compression-driven and advection-driven components ∆T c +∆T a,
arising from pressure variations and temperature gradients carried along by the
flow, the two being independent mechanisms. The reason for decomposing tem-
perature like this is that the Nusselt numbers for the two sources of temperature
variation differ, compression-driven temperature variations being roughly twice
as effective at driving wall heat transfer as advection-driven temperature varia-
tions in the high Valensi-number limit, according to first-order oscillating-flow
solutions [16, 64].

Because turbulent flow tends to homogenize the duct temperature distribu-
tion, the logic of the complex formulation breaks down in turbulent flow. So
duct gas domains apply the complex formulation only to laminar flow, transi-
tioning to a steady-flow formulation for turbulent flow. For laminar flow duct
gas domains formulate wall heat transfer as

Qwl = (k/dh)Sx [Nul(∆T − <∆T) + <(Nuc∆T c) + <(Nua∆T a)] (18.24)

where Nul is the laminar steady-flow Nusselt number, applied to the mean
temperature difference (plus higher harmonics). Nuc is the compression-driven
complex Nusselt number and Nua is the advection-driven complex Nusselt num-
ber (e.g. section 20.6), applied to the compression-driven and advection-driven
complex temperature differences. For turbulent flow the formulation is simply

Qwt = (k/dh)SxNut∆T (18.25)

where Nut is the turbulent Nusselt number.

Duct gas domains define a turbulence variable T that measures the relative
level of turbulence, ranging from 0 to 1 (see section 18.8). A value of T = 0
is laminar, T = 1 turbulent, with values between 0 and 1 transitional. The

18.6. GAS DOMAIN THEORY 163

general formulation for all turbulence values, including transitional is

Qw =

Qwl if T ≤ 0
(1 − T)Qwl + T Qwt if 0 < T < 1
Qwt if T ≥ 1

(18.26)

The trick is how to evaluate ∆T c and ∆T a, given that the only temperature
available directly from the Sage solution is the combined result ∆T . This goes
roughly as follows:

• Start with the high Va limits of the compression-driven and advection-
driven temperature variations according to Swift’s first-order acoustic so-
lution [64].

∆T
∞
c = T w − T

∞
c = − Tβ

(ρCp)m
P1 (18.27)

and

∆T∞
a = T w − T∞

a = − 1

ω

∂Tm

∂x
i 〈u〉 (18.28)

P 1 is the complex pressure variation and 〈u1〉 is the complex section-
average velocity variation, both of which are calculate per section 8.5.2.
Subscript m denotes time-mean values. β = (∂v

∂T)P /v is the gas volumetric
expansivity.

• Then calculate approximate values at the current Va as the scaled values
∆T c0 = s∆T∞

c and ∆T a0 = s∆T∞
a where s is a complex scale fac-

tor derived from Swift’s exact solution for temperature (section-averaged)
over the entire range of Va. According to a curve fit to Swift’s solutions
the following scale factor is a rough approximation for both temperature
variations:

arg(s) ≈ π

2
(1 − |s|) (18.29)

and

|s| ≈ (VaPr)
2 −

√

2(VaPr)3 + 2(VaPr)

(VaPr)2 + 24
(18.30)

• In order to ensure that the sum ∆T a + ∆T c is always the actual ∆T ,
calculate the final values as ∆T c = ∆T c0/R and ∆T a = ∆T a0/R where
R is the complex scaling ratio

R =
∆T c0 + ∆T a0

∆T
(18.31)

Except when the denominator in equation (18.31) is zero, in which case
take ∆T c and ∆T a both zero.

164 CHAPTER 18. GAS DOMAINS

Explicit Surface Temperature

Although it might appear that ∆T is the independent variable in the preceding
heat-flow equations, from the point of view of Sage’s solver it is actuallyQw that
is the independent variable, implicitly solved so that Tw is continuous across the
gas-solid connection at the negative z surface. Sage solves ∆T implicitly from
equations (18.22), (18.23) or (18.26), considering heat flux Qw as given.

18.6.3 Combustion Heating Qc

In rare instances where it may be appropriate to consider an internal heating
source within the gas (see the combustion-space gas domain of section 18.5.4),
an energy source Qc is added into energy equation (18.13), on the same footing
as the above film heat transfer term, except it represents internally generated
heat per unit length. This energy input is treated as a simple energy source
independent of any actual combustion chemistry.

18.6.4 Gas Axial-Conduction Heat Flow q

Term q in the gas energy equation is instantaneous axial heat flow which we
may formulate as

q = −ke
∂T

∂x
A (18.32)

where ke is the effective gas conductivity — which may exceed molecular con-
ductivity due to turbulent enhancement. This may be formulated in terms of
an axial-conductivity enhancement ratio Nk as:

q = −Nkk
∂T

∂x
A (18.33)

18.6.5 PV Power Flow

In SCFusion machines gas-borne enthalpy flows are important but they are not
everything. It is possible to transmit thermal energy through a gas duct from
a high-temperature source to a low temperature sink without doing any useful
work. That is a foolish thing to do because converting heat to work or vice-
versa is the essential purpose of a SCFusion machine. What distinguishes useful
enthalpy flow from useless enthalpy flow is the PV power transmitted by the
flow. PV power flow is not a solved variable in gas-domain computational grids.
It can’t be because unlike other solved variables PV power is not defined at a
fixed location, but rather moves along with the flow. It can be estimated from
available solved variables, but only approximately.

Consider a gas element between a stationary inlet and an imaginary imper-
meable boundary moving with the flow. In terms the element’s pressure P and
volume V , the instantaneous PV power delivered to the moving boundary is

P V̇

18.6. GAS DOMAIN THEORY 165

The challenge is to estimate P V̇ from solution variables at the stationary inlet.
The volume V can be written Mv, where M =

∫
(ρuA) (the integral of the mass

flow rate passing through the stationary inlet) and v is the gas specific volume
for the volume element as a whole, which is not necessarily the specific volume
at the inlet. The rate of change of Mv can be approximated in terms of the
time-average specific volume at the inlet vm and time average mass Mm as

˙(Mv) ≈ Ṁvm +Mmv̇

In the first term on the right the rate of change of M is just (ρuA). In the
second term on the right Mm is the time integral of ρuA over a full cycle, which
is zero for oscillatory flow. If flow is steady then v̇ is zero. In either case it is
reasonable to ignore the second term. If flow is a oscillatory with a DC flow
component then it is not so clear, but this is just an approximation so it is
convenient to ignore the second term anyway. Without the second term the
approximate instantaneous PV power flow works out to

P V̇ ≈ P (ρuA)vm (18.34)

The time average of the right-hand side is how Sage gas domains approximate
PV power flow.

18.6.6 Equations of State

Tying the gasdynamic equations together is an equation of state which serves to
formulate the dependent variables P and T as functions of independent variables
ρ, ρuA and ρe — specifically as P (ρ, T) and T (ρ, ρe, ρuA). The gas-property
objects defined in the SCFusion root model provide these functions (see chapter
15).

18.6.7 Solution Method

The gasdynamic equations are discretized over a grid of points (xi, tj) uniformly
spaced throughout the domain and over the cycle period. Upon this grid, vari-
ables ρ, ρuA and ρe, are solved implicitly or interpolated explicitly according to
the logic of a staggered-grid formulation. The essential idea is to solve ρuA at
alternate nodes from ρe and ρ to avoid solution instability and produce global
conservation of mass, momentum and energy. Solution staggering is with respect
to the spatial direction only.

The concept of control volumes is helpful for keeping things straight in the
staggered-grid scheme. Control volume boundaries can be thought of as lying
on alternate spatial nodes. One can think of it this way: ρuA is solved at the
control volume boundaries, while ρ and ρe are solved at the midpoints. The
entire domain comprises an integral number of control volumes or, including
endpoints, an odd number of nodes greater than or equal to three. Global
conservation of energy and mass automatically hold for the solved variables ρ
and ρe if one is careful to use first-order central differencing in the continuity

166 CHAPTER 18. GAS DOMAINS

and energy equations so that, in effect, quantities leaving one control volume
enter the adjacent one.

Interior Points

Those nodes lying strictly within the domain interior give rise to implicit finite-
difference equations for the solved variables ρuA, ρ and ρe. Variables that
are not solved at interior nodes are interpolated. In the case of ρuA and ρe,
interpolation takes the form of a central polynomial interpolation of neighboring
solved values. The degree of the interpolation (linear or cubic) can be specified
in the Options|Sage dialog. In the case of ρ, interpolation is a weighted average
of central interpolation and interpolation with the set of interpolation points
shifted toward the upwind direction. This weights the interpolation toward the
currently upwind direction in order to stabilize the solution. You can specify
the relative fraction of upwind interpolation with input variable UpwindFrac,
should the default value be too small. Without the upwind weighting, density
and temperature profiles can sometimes show a static zig-zag instability in gas
domains where there is not a lot of thermal diffusion to dampen the effect.

Endpoint Boundary Points

These are the nodes lying at the negative and positive domain boundaries —
the flow inlets. Solved variables ρ, ρuA, ρe get special treatment at such nodes,
depending on whether or not there is a flow connection to an adjoining gas
domain or not. This is explained fully in the following section. Other variables
are simply extrapolated from the interior.

Minimal Requirement for Resolving Pressure Drop

One idiosyncrasy of the solution method is worthy of note: Pressure-drop,
whether due to flow resistance or acceleration, will be ignored in any gas domain
containing only one control volume. According to the staggered-grid solution
scheme of the gas domain, the momentum equation will never be invoked when
only one cell is present, leaving mass flow rate determined solely by Bernoulli’s
law in adjacent flow connectors. This behavior is not necessarily bad. It may
even be desirable in some cases. But it is something to keep in mind.

The Mean Pressure Constraint

Although it may not be immediately apparent, the solution scheme so far out-
lined will result in a singular system of implicit equations. In physical terms,
there is no mechanism to establish the mean pressure.

Resolving this dilemma requires a close inspection of the mass-continuity
equations enforced in the gas domain interior. Taken together, these equations
imply that the cyclic-net mass passing through the endpoint boundaries is zero,
meaning that we cannot independently set boundary mass flow rate at both
endpoint boundaries for all time nodes. Looking at this in another way, if we do

18.6. GAS DOMAIN THEORY 167

specify boundary mass flow rates at all time nodes (such that cyclic-net mass
through boundaries is zero) and enforce the mass-continuity equation at all but
one interior cell, say (i0, j0), then mass continuity is automatically guaranteed
for (i0, j0). This frees us to replace the mass continuity equation at (i0, j0) with
a mean-pressure constraint instead — which is what we do.

The penultimate sentence in the preceding paragraph is really a mathe-
matical theorem that follows from the conservation property of central spatial
differencing in our staggered-grid scheme and the time-ring-differencing prop-
erty

∑

j

∂f

∂t
(i, j) = 0 (18.35)

which holds no matter what. To show the mass-continuity equation indeed holds
at (i0, j0) we first use the time ring differencing property to conclude that

∂ρA

∂t
(i0, j0) = −

∑

j 6=j0

∂ρA

∂t
(i0, j) (18.36)

we immediately replace the right-hand side using

−
∑

j 6=j0

∂ρA

∂t
(i0, j) =

∑

j 6=j0

∂ρuA

∂x
(i0, j) (18.37)

=
∑

j

∂ρuA

∂x
(i0, j) −

∂ρuA

∂x
(i0, j0) (18.38)

the first part of the above equation follows from the presumed local mass conti-
nuity for all nodes but (i0, j0) and the second part is just regrouping. The first
term on the right may be further resolved into

∑

j

∂ρuA

∂x
(i0, j) ∝

∑

j

ρuA(i0 + 1, j) −
∑

j

ρuA(i0 − 1, j) (18.39)

∝
∑

j

ρuA(2M, j) −
∑

j

ρuA(0, j) (18.40)

(18.41)

which follows from central differencing formula used in the computational grid,
then summing the local mass-continuity equations over j at successive columns
in the grid from i0 + 2 to the positive boundary i = 2M and from i0 − 2 to the
negative boundary i = 0. Combining the above results we are left with

∂ρA

∂t
(i0, j0) +

∂ρuA

∂x
(i0, j0) ∝

∑

j

ρuA(2M, j) −
∑

j

ρuA(0, j) (18.42)

which is the mass-continuity equation at (i0, j0) we are after, provided the right-
hand side evaluates to zero, which it will if the net mass flow through the
endpoint boundaries is zero.

168 CHAPTER 18. GAS DOMAINS

In a system comprising many gas domains joined by flow connectors, the
above result still applies to the system as a whole. So long as zero net mass
flows through the ultimate boundaries of the system, we are free to replace a
local mass-continuity equation at exactly one node (i0, j0) with a mean-pressure
constraint. In a Sage model the gas domain to which the mean-pressure con-
straint applies is the one attached to the pressure-source component (see section
18.4).

18.7 Flow Connector Theory

Flow area may change abruptly between adjacent gas domains, requiring special
consideration in Sage’s one-dimensional formulation. Between every two gas
domains that are connected together there is a special flow connector object
that manages the connection behind the scenes. There are three conditions to
satisfy: conservation of mass, momentum and energy. Conservation of mass is
automatic because of the choice of mass flow rate ρuA as a solution variable.
Sage uses momentum continuity (Bernoulli’s law) as the implicit equation for
solving mass flow rate in flow connectors. This is entirely consistent with the
staggered-grid treatment for ρuA in the bounding gas domains. This leaves
only energy conservation. Here Flow connectors pass responsibility back to the
bounding gas domains but help them out by keeping track of the enthalpy on the
other side of the connector and the thermal conduction through the connector.
The bottom line is that because of a Bernoulli pressure change, mass density
ρ and energy density ρe may jump slightly across the connector, but energy
is always conserved. The inter-domain flow connector model resides in unit
FlowCnct.

18.7.1 Bernoulli’s Law

Momentum flow continuity is a limiting case of the integral-form momentum
equation applied to the connector volume itself when the − boundary approaches
the + boundary in the stream tube V shown in figure 18.3. The only terms that
survive in the limit are the net momentum flow leaving through the boundaries
[uρuA]+ − [uρuA]− = ρuA(u+ − u−) and the net pressure force acting on the
boundaries P−A− + Pm(A+ − A−) − P+A+, the middle term being the axial
component of force on the side walls with Pm some intermediate pressure. Tak-
ing Pm = (P− + P+)/2, expanding pressure terms and simplifying yields the
following momentum flow continuity condition

ρuA(u+ − u−) + (P+ − P−)Am = 0 (18.43)

where Am = (A− + A+)/2. This can be put in the more familiar form of
Bernoulli’s law by using the previous mass flow continuity condition to replace
ρuA with ρmumAm, where um = (u− + u+)/2 and ρm is some intermediate

18.7. FLOW CONNECTOR THEORY 169

HHHH

����

A−
ρ−
u−
P−

V

A+
ρ+
u+

P+

Figure 18.3: Control volume v used to evaluate momentum flow continuity; A
= flow area, ρ = density, u =velocity, P = pressure.

density, leaving

P+ − P− = ρmum(u− − u+) = ρm
u2
− − u2

+

2
(18.44)

Flow connectors use this equation to implicitly determine mass flow rate ρuA
through the connector, thereby ensuring that Bernoulli’s law governs the pres-
sure change across the connector.

18.7.2 Energy Continuity

Energy flow continuity is similarly derived by integrating the gas energy equation
across a transition volume between adjacent components and then taking the
limit as volume approaches zero. The result is

[(ρe+ P)uA+ q]+ − [(ρe + P)uA+ q]− = 0 (18.45)

A problem with this equation is that advected enthalpy (ρe + P)uA is mixed
up with thermal conduction q, making them impossible to resolve individually
with single equation. So flow connectors separate the energy continuity equation
into two parts, enthalpy continuity and conduction continuity, to be separately
enforced

[(ρe+ P)uA]+ − [(ρe + P)uA]− = 0 (18.46)

q+ − q− = 0 (18.47)

Enthalpy Part

How should enthalpy continuity equation (18.46) be implemented in Sage’s so-
lution scheme? First of all it is helpful to write stagnation enthalpy flow in the
form

H = (ρe+ P)uA = ρuA(ρe + P)/ρ = (ρuA)h (18.48)

where h is the mass specific enthalpy of the gas, a thermodynamic state property.
In this form it is clear that h must be conserved across the flow connector. The

170 CHAPTER 18. GAS DOMAINS

question is how? One problem is that there are two h’s to determine, one on
either side of the flow connector. Another problem is that h is not a primary
solution variable. It is calculated in terms of primary solution variables ρ and
ρe and dependent variable P . How can one equation (enthalpy continuity)
determine all these variables? The answer is that it cannot. In the Sage solution
scheme enthalpy continuity determines only the volumetric energy density ρe
at the downstream endpoint. Other variables are evaluated according to this
table:

variable upstream endpoint downstream endpoint

ρ extrapolated EOS
ρe extrapolated enthalpy continuity
P extrapolated extrapolated
T extrapolated extrapolated

The word “extrapolated” in the above table means that the variable is extrap-
olated from its values at interior nodes located at the centers of computations
cells. Energy density ρe (which generally changes with time) is chosen as the
variable used to enforce enthalpy continuity because it is a property carried with
the flow and the principle of upstream causality suggests that upstream condi-
tions determine downstream conditions, not vice-versa. In the case of pressure
P it makes sense to extrapolate its value at the endpoints regardless of flow
direction because pressure information propagates at sonic velocity which is not
carried with the flow in the low subsonic flow range where all good SCFusion
machines operate. In the case of mass density ρ the word ”EOS” means that
Sage solves it implicitly so that ρ, T and P are consistent with the fluid equation
of state. To avoid a singular solution Sage cannot also evaluate T according to
the equation of state so instead it extrapolates T from the interior solution. The
result of all this is for incoming flow (downstream endpoint) Sage uniquely de-
termines both ρ and ρe from the equation of state and the principle of enthalpy
conservation.

Since Sage extrapolates temperature at gas domain endpoints from the in-
terior solution there may be a slight discontinuity of temperature across flow
connectors. This is more of an apparent problem than a real problem because
none of the governing equations depends on T values at cell boundaries.

Prior to version 13 (October 2024) Sage implemented enthalpy conserva-
tion differently. Mass density ρ rather than energy density ρe enforced enthalpy
conservation and ρ was not guaranteed to be consistent with T and P according
to the equation of state. This sometimes caused trouble with ρ and T drifting
out of the range of property tables. There was also a problem that came to
light after relaxing the requirement that mass-specific internal energy e values
always be positive, to be more consistent with refprop fluid data files (accord-
ing to choice of energy integration constant). This means the value of ρe can be
negative and possibly take on the value −P , making the value of enthalpy flow
H = 0. This actually came close to happening in a test model, which would

18.7. FLOW CONNECTOR THEORY 171

Figure 18.4: Inlets at positive end of a gas domain with enthalpy flow (ρUA)ehe

based on internal solution values balancing (ρUA)inhin and (ρUA)outhout en-
tering or exiting from/to external gas domains via flow connectors.

have produced a divide-by-zero error in the previous formulation. The present
formulation avoids this problem by separating the ρe and P parts of enthalpy.

Complication of Multiple Connections

Gas domains support multiple connections at their endpoint boundaries. The
simplest such case is a Y-branch where one domain splits into two or two domains
converge to one, although more complicated connections are possible. Gas do-
mains manage this complexity by logically breaking their endpoint boundaries
into a number of distinct flow inlets, one for each flow connector, as illustrated
in figure 18.4. The flow connectors communicate with the individual flow inlets
which then communicate with the gas domain. Flow inlets are software objects
encapsulated together with the gas domain.

Under this scheme, gas domains obtain their endpoint mass flow rate by
polling all flow inlets to return the mass flow rate from their associated flow
connectors and summing the results. Since mass is a conserved quantity and
mass flow rate is a solution variable this is completely straight forward.

It is more complicated for gas domains to evaluate the correct energy density
which, according to the above logic, must be based on enthalpy continuity.
The problem is that a gas domain with multiple inlets can be simultaneously
downstream of one flow connector while upstream of another. In other words,
one inlet can see incoming flow while the other sees outgoing flow.

At this point it is convenient to denote variables at the gas domain endpoint
by the subscript e and those within the individual flow inlets by subscript i.

Enthalpy conservation requires that the sum-total of stagnation enthalpy
flows passing through the inlets must equal the stagnation enthalpy flow com-
puted at the gas-domain endpoint and used in its interior solution. This latter
quantity is always calculated from gas-domain endpoint variables as

He = [ρuA]ehe (18.49)

Outgoing enthalpy terms for the inlets are based on a mixed enthalpy hm

172 CHAPTER 18. GAS DOMAINS

solved according to enthalpy conservation

Hi = [ρuA]ihm (18.50)

Incoming enthalpy terms for the inlets are based on solution values managed
by the gas domains upstream of the flow connectors from which they originate

Hi = [ρuA]ihi (18.51)

In terms of the above definitions the condition of enthalpy-flow continuity may
be written

0 = He −
∑

i

Hi = he(ρuA)e − hm

∑

out

(ρuA)i −
∑

in

Hi (18.52)

where designations in (in-flowing) and out (out-flowing) are relative to the local
gas domain.

case in-flowing [ρuA]e In this case the principle of upstream causality re-
quires that the endpoint enthalpy he equal the mixed enthalpy hm. The en-
thalpy continuity equation becomes

0 = hm

(ρuA)e −
∑

out

(ρuA)i

−
∑

in

Hi (18.53)

According to mass flow rate continuity (ρuA)e −
∑

out(ρuA)i =
∑

in(ρuA)i so
the previous equation may be simplified to

0 = hm

∑

in

(ρuA)i

−
∑

in

Hi

Or
hm =

∑

in

Hi/
∑

in

(ρuA)i (18.54)

To make use of mixed enthalpy hm within the solution it is converted to an
equivalent value for ρe at the endpoint. First write hm as

hm = em + P/ρ (18.55)

where em is the mixed energy density em and ρ is the endpoint density extrap-
olated from the interior solution. Then solve for em as

em = hm − P/ρ

and write the value of endpoint ρe that satisfies enthalpy continuity as

(ρe)e = ρem = ρhm − P (18.56)

18.7. FLOW CONNECTOR THEORY 173

case out-flowing [ρuA]e In this case the endpoint enthalpy he is extrapo-
lated from the interior gas domain solution and the explicit solution of enthalpy
conservation equation (18.52) for mixed enthalpy is

hm =

he(ρuA)e −
∑

in

Hi

 /
∑

out

(ρuA)i (18.57)

The value ρem can be solved from hm as before but since both local values ρ
and ρe are extrapolated from the interior solution, it is not used for the local
solution but only passed to flow connectors for use in downstream gas domains.

Thermal Conduction Part

Thermal conduction continuity is much easier than enthalpy continuity since it
does not involve so many solution variables or change with flow direction. Flow
connectors look at the conductance (conductivity times area kA) and tempera-
ture gradients of the adjoining gas domains in order to decide the appropriate
value of q allowed to “pass through” the connection. That is, flow connectors
explicitly calculate q which adjoining gas domains use at their endpoints.

This approach differs from the way solid domains are connected in Sage. In
solid domains the connector calculates q implicitly according to the requirement
that temperature is continuous across the connection. In gas domains this is
not necessary because temperature continuity is already established by enthalpy
continuity and the equation of state in the adjoining gas domains. Not only is
it not necessary but if temperature continuity were separately imposed by the
thermal-conduction continuity then it would completely disrupt the solution.

However, explicitly calculating thermal conduction is not completely triv-
ial. One problem is that the adjoining gas domains may have wildly different
conductances. To avoid disrupting the solution in the low-conductance domain,
flow connectors calculate q based on the smaller of the two conductances. A
second problem is calculating a representative temperature gradient. Sages uses
a finite-difference approximation based on the temperatures T+, a distance dx+

beyond the endpoint of the positive domain, and T−, a distance dx− before the
endpoint of the negative domain. dx+ and dx− are the node spacings in the
two gas-domain grids. The final formulation for calculating q is

q = −min(kA−, kA+)

(
T+ − T−
dx+ + dx−

)

(18.58)

Doing it this way has several important properties:

• Satisfies the requirement that q = 0 if either kA = 0

• Continuous if the smaller kA changes

• Preserves the temperature gradient for the case where the temperature
gradients of the two gas domains are the same.

174 CHAPTER 18. GAS DOMAINS

Another problem is the complication of multiple connections. To deal with
this, gas domains use the same logical breakdown into flow inlets as previously
discussed for enthalpy conservation. Each inlet is allocated an equal fraction of
the total gas domain conductance which it passes to the flow connector. For
example, for a gas domain with N endpoint connections, each inlet is allocated
conductance kA/N . The gas domains then obtain their endpoint conduction by
polling all inlets to return the q’s from their associated connectors and summing
the result. This is similar to the way they obtain endpoint mass flow rate and
works for the same reason: thermal conduction is a conserved quantity.

Conduction blocked by default In evaluating kA− or kA+ values at gas
domain endpoints Sage factors in the empirical multiplier input KmultBnd. The
default value for KmultBnd is zero, which has the effect of blocking thermal
conduction through the endpoints. One reason for this is that it speeds up the
solution process by limiting the scope of solution-variable dependencies between
gas domains. Another reason is that thermal conduction is generally negligible
between most gas components in a SCFusion model. When you want to model
conduction between gas domains be sure to set KmultBnd equal to 1 in both
domains.

18.8 Turbulence Models

Knowing the state of turbulence is critical for computing the empirical rela-
tionships for friction factor f , Nusselt number Nu and axial conductivity ratio
Nk used in the various gas-domain model components, of which there are three
basic types: matrix, duct and variable-volume.

18.8.1 Matrix Gas Domains

Matrix gas domains presume quasi-steady flow, meaning that local Reynolds
number Re completely characterizes the turbulence state. Entrance effects and
time-constants for boundary-layer growth are neglected. In most porous mate-
rials, the issue of turbulence is moot anyway since relatively simple formulations
for friction factor f , Nusselt number Nu and enhanced axial conductivity ra-
tio Nk typically apply over the entire Reynolds number range of interest. In
non-porous matrix materials, though, (notably wrapped foils) the state of turbu-
lence does matter because formulations for f , Nu, and Nk tend to be completely
different for laminar vs turbulent flow.

When turbulence matters, matrix gas domains correlate dimensionless groups
as a weighted average of the laminar and turbulent cases. For example friction
factor is computed from a laminar value fl and a turbulent value ft as

f = (1 −W)fl +Wft (18.59)

The idea is that weight function W varies smoothly between 0 and 1 as flow
goes from laminar to turbulent. Smooth is better than abrupt for numerical

18.8. TURBULENCE MODELS 175

convergence reasons.
The weight function is formulated in terms of a normalized and zero-shifted

Reynolds number R∗
e defined as

R∗
e ≡ Re −Rl

Rt − Rl
(18.60)

Here Rl = 2300 and Rt = 10, 000 are the critical below-which-is-laminar and
above-which-is-turbulent Reynolds numbers, conventional in the steady flow
literature. Note that R∗

e varies from 0 to 1 in the transitional Reynolds-number
range. The turbulence weight function is now defined as

W (R∗
e) =

0 if R∗
e ≤ 0

2R∗2
e if 0 < R∗

e ≤ 1/2
1 − 2(1 − R∗

e)
2 if 1/2 < R∗

e ≤ 1
1 if 1 < R∗

e

(18.61)

This formulation is first-derivative continuous everywhere, which should be
smooth enough for Sage.

18.8.2 Duct Gas Domains

In duct gas domains we no longer have the luxury of neglecting entrance effects
or time constants for boundary-layer growth. In addition to Reynolds number
Re, the state of turbulence depends on Valensi number Va, elapsed time since
flow reversal and convective triggering, which is turbulence triggered by a slug
of turbulent fluid that enters through one of the inlets and is carried to the point
of observation by the mean flow.

Modeling turbulence in such ducts is a tall order for a one-dimensional model.
Our goal is keep things as simple as possible, relying heavily on empirical ob-
servation. Researchers Terry Simon, Joerg Seume and others at the University
of Minnesota [58], [60], [59], [61] have observed that transition to turbulence is
delayed in proportion to

√
Va for large Valensi numbers and that flow is always

laminar according to:

always laminar if Re/Rl < max(
√

Va/Vc, 1) (18.62)

where Rl ≈ 2300 is a critical Reynolds number and Vc ≈ 10 is a critical Valensi
number, below which flow is essentially similar to steady flow. Above the always
laminar condition, the Minnesota researchers observed turbulence transition due
mainly to convective triggering, with turbulence persisting until the time of flow
reversal, but generally not beyond, leaving the velocity profile uniformly zero
across the tube cross-section at the time of flow reversal. The Minnesota obser-
vations were generally confined to mean-flow tidal displacements greater than
the tube length. University of Michigan and MIT researchers R. Akhavan, R.
D. Kamm and A.H. Shapiro, [3], support these conclusions and make additional
observations pertaining to the spontaneous transition to turbulence of fluid in
the duct interior, not affected by disturbances propagating from the inlets. They

176 CHAPTER 18. GAS DOMAINS

observed that turbulence was generally delayed during most of the acceleration
phase of the cycle but exploded suddenly near the end of this phase (just before
or just after the time of peak velocity), with turbulent flow persisting throughout
the deceleration phase, until the time of flow reversal. They saw no turbulence
for peak Re/

√
Va less than about 700 – 800, or so, consistent with the above

always laminar condition for Va > Vc. And when turbulence was present, they,
like the Minnesotans, observed that the velocity profile was uniformly zeroed
out at the time of flow reversal. Then during the following acceleration phase
the velocity profile was very close to the exact solution for start-up from rest of
laminar flow in a tube, until the time of turbulence transition. They attributed
the delay in turbulence transition to the stabilizing effects of fluid acceleration,
although the viewpoint here (and of the Minnesota researchers) is that it just
a matter of the time required for the boundary layer to grow to an unstable
thickness.

To attempt to capture all these effects, in duct gas domains there is a special
turbulence intensity variable T added to the set of state variables and solved
implicitly from its own partial differential equation. This turbulence variable
T functions much like the weight function W in the matrix gas-domain model.
Again using friction factor as an example, we compute local instantaneous fric-
tion factor from the weighted average of a laminar value fl and a turbulent value
ft

f = (1 − T)fl + T ft (18.63)

Turbulence intensity T is to vary smoothly between 0 and 1 as flow goes from
laminar to turbulent.

We may think of T as a normalized version of ρκ, where κ is the time-
averaged turbulence kinetic energy per unit mass

κ = 1/2
〈
u′2 + v′2 +w′2

〉
(18.64)

More precisely, we might think of T as roughly proportional to ρκ/(ρ0u
2) ∝

κ/u2, where u(x, t) is the mean-flow velocity. We can estimate the constant of
proportionality by noting that for the fully turbulent state (T = 1), the RMS
velocity fluctuation (

√
2κ) is about 0.08u, according to [61]. So a reasonable

estimate for T would be

T ≈ 2κ

(0.08u)2
(18.65)

Because of the variable nature of the normalization quantity u2, T is not, strictly
speaking, a tangible quantity carried along with the flow (like ρκ itself is).
Nonetheless, it is convenient to overlook this and presume that T is governed
by a one dimensional differential equation like our other gasdynamic equations

∂T A
∂t

+
∂T uA
∂x

︸ ︷︷ ︸

convection

= G(Re, Va)
︸ ︷︷ ︸

generation

−D(Re, Va)
︸ ︷︷ ︸

decay

(18.66)

The only problems are deciding on inlet boundary conditions and decay and
generation terms to impart the desired properties to the solution T — namely,

18.8. TURBULENCE MODELS 177

that T be 0 when flow is to be laminar, 1 when flow is be turbulent and some-
where in between during transition. The convection term automatically takes
care of convective triggering.

Inlet Boundary Conditions

The University of Minnesota work suggests that incoming fluid is always turbu-
lent. This turbulence is either the result of high upstream turbulence level or
continuously generated by separation of incoming flow at the inlet. Denoting
the incoming turbulence level by Tin, it appears then that a value Tin = 1 is
reasonable, although the value is adjustable to any value between 0 and 1 with
input variables TbInNeg and TbInPos, which define the incoming turbulence
level at the two ends of the duct. For outgoing flow, it makes physical sense
to extrapolate T at the end boundary from interior values, denoted by E(T).
There is no problem with T discontinuity at flow reversal since only the product
T uA (always zero at flow reversal) affects the interior solution. The value of T
at either inlet boundary is computed as

T =

{
Tin inflow
E(T) outflow

(18.67)

Transition

The universal observation seems to be that in turbulent oscillating flow the
steady velocity profile zeros out uniformly across the duct cross-section at flow
reversal. Essentially, each half cycle begins anew from rest. Simon et. al. argue
in [61] that under these conditions transition should occur when the momentum-
thickness Reynolds number

Rδ =
uδ

ν
(18.68)

reaches a critical value. u is the instantaneous mean flow velocity, ν = µ/ρ
is kinematic viscosity and δ is the so-called momentum thickness, roughly the
boundary-layer thickness, but defined more precisely in Schlichting ([55], equa-
tion 7.38, p. 141) for a flat plate as

δ =

∫ ∞

y=0

u

U∞

(

1 − u

U∞

)

dy (18.69)

Here, y is the normal distance from the wall and u(y) is velocity. Reference [2]
shows that for undisturbed flow, Rδ may range between 1200 and 3000 from the
start to end of transition, while the range of transition drops to Rδ between 200
and 400 with as little as 4% free-stream turbulence level.

The boundary-layer growth for a flat plate accelerated sinusoidally from rest
can be seen in the velocity profiles shown in figure 18.5. In the figure the fluid
is initially at rest with the wall suddenly started moving with velocity u(0, t) =
sinωt at ωt = 0. This is equivalent to the present problem of interest, which
is a fixed wall with free-stream velocity suddenly started moving with velocity

178 CHAPTER 18. GAS DOMAINS

Figure 18.5: Velocity profiles at equally-spaced times 0 ≤ ωt ≤ π for viscous

flow governed by ∂u
∂t = ν ∂2u

∂y2 . Fluid initially at rest (u(y, t) = 0, for t < 0) with

wall boundary condition u(0, t) = sinωt for 0 ≤ ωt ≤ π. From a numerical
solution based on the Crank-Nicolson implicit method.

u(∞, t) = − sinωt at ωt = 0 (driven by a sinusoidal pressure gradient ∂P
∂x

), by
the addition of − sinωt to the velocity solution everywhere. The advantage of
the velocity profiles shown is that they better show the viscous boundary layer
thickness.

The momentum thickness for the case of flow accelerated sinusoidally from
rest is shown in figure 18.6. Except for a brief time at the beginning of the flow
and lasting until well after the time of peak velocity, the momentum thickness
grows linearly with time in close approximation to

δ =
√

ν/ω(0.15 + 0.225ωt) if 0.3 ≤ ωt ≤ 2.3 (18.70)

So for sinusoidal flow starting from rest the momentum-thickness Reynolds num-
ber, and hence the point of turbulence transition, may be easily calculated.
Transition so predicted is probably valid for 0 ≤ ωt ≤ 2.3, because in this
range the velocity profiles qualitatively resemble those of suddenly-accelerated
flow (u(∞, t) = u0 for ωt ≥ 0), the conditions for which the correlation be-
tween momentum-thickness Reynolds number and turbulence transition were
originally established. Beyond ωt = 2.3, though, the velocity profile begins
to show a pronounced maximum at some distance from the wall which, due
to a mathematical technicality, has the effect of producing diminishing, then
negative, momentum thicknesses even though the actual viscous-layer thickness
continues to grow, as can be seen in figure 18.5. So the momentum-thickness
Reynolds number cannot be used as a predictor of transition during the later
stages of the flow half-cycle.

18.8. TURBULENCE MODELS 179

Figure 18.6: Growth of dimensionless momentum thickness
√

ω/νδ with time
ωt for flow accelerated sinusoidally from rest. Calculated according to formal
definition (18.69) with integration performed numerically based on a finite dif-
ference solution of the velocity profile.

In order to discover critical value of the momentum-thickness Reynolds num-
ber, first write it in terms of the usual hydraulic-diameter Reynolds number as

Rδ = Re δ/dh (18.71)

Then replace factor δ/dh by substituting approximation (18.70) for δ and expand
into dimensionless variables, leaving

Rδ ≈ 0.075 + 0.112ω(t− t0)√
Va

Re (18.72)

To avoid confusion, the elapsed time since flow reversal is written above and
hereafter as (t− t0). And to save time, the numerator of the coefficient of Re is
hereafter written

F (t− t0) ≡ 0.075 + 0.112ω(t− t0) (18.73)

At this point, there is no need to work with Rδ directly at all. Taking the
critical value of Rδ as an unknown constant Rδc, the turn-on time for turbulence
generation may be stated

laminar until Re > Rδc

√
Va

F (t− t0)
(18.74)

Even though approximation F (t − t0) is not valid for ω(t − t0) > 2.3, it will
do no harm because transition will always occur before this, if at all, before or
slightly after the time of peak velocity at ω(t− t0) = π/2.

180 CHAPTER 18. GAS DOMAINS

The constant Rδc may be evaluated according to the observed always-laminar
condition (18.62) for high Valensi numbers (Va > Vc), which states that for
a cycle with peak Reynolds number Rem below about 730

√
Va, the flow re-

mains laminar for the whole cycle, whereas for any higher Rem, flow becomes
at least partly turbulent. On the other hand, substituting Rem sin(ω(t − t0))
for Re in momentum-thickness condition (18.74), the implication is that flow
remains laminar until Rem(sin(ω(t − t0))F (t − t0)) exceeds Rδc

√
Va. So, the

largest Rem for which flow remains always laminar may be evaluated by setting
ω(t − t0) ≈ 1.937, where sin(ω(t − t0))F (t − t0) ≈ 0.274 attains its maximum
value. It follows that 730

√
Va must equal Rδc

√
Va/0.274, so that

Rδc ≈ 200 (18.75)

which is in reasonable agreement with the value reported in [2] for disturbed
initial flow.

Transition criterion (18.74) applies only when Valensi number is above some
lower limit because for

√
Va/(F (t− t0)) too low, the growth of the momentum-

thickness will be limited by the duct dimensions. Below this, turbulence onset
may be characterized by the well-known steady-flow criterion; namely, that flow
is laminar until Re rises above Rl. Just when this lower limit of

√
Va/(F (t−t0))

occurs may be taken as a constant c1, conveniently determined as the value that
makes the low- and high-Valensi number branches continuous in the following
universal condition for the time of turbulence onset:

if

√
Va

F (t− t0)
≥ c1 then laminar until Re = Rδc

√
Va

F (t− t0)
(18.76)

if

√
Va

F (t− t0)
< c1 then laminar until Re > Rl (18.77)

The value of c1 is evidently Rl/Rδc ≈ 2300/200 or about 11.5. So the universal
turbulence onset condition may be collapsed into the single condition

laminar until Re > Rt (18.78)

where Rt is the critical Reynolds number

Rt = 200 max(

√
Va

F (t− t0)
, 11.5) (18.79)

Required in evaluating Rt within a computational solution is the current value
of ω(t− t0), the dimensionless time since the previous flow reversal. As of Sage
version 13 the times of flow reversal (two per cycle period) are based on the
sinusoidal first-harmonic approximation of fluid mass flow rate (see section 8.5.2)
and to some extent the time-average mass flow rate. The elapsed dimensionless
time since flow reversal is the current dimensionless time (2πj/N , for time-grid
index j of NTnode nodes) minus the dimensionless time for the most recent flow
reversal. If there is a non-zero time-average mass flow rate it shifts the flow
reversal times (see below).

18.8. TURBULENCE MODELS 181

Criterion (18.78) establishes the time when turbulence generation begins.
But what is the rate of turbulence growth, during the transition period? To
answer that it is first necessary to consider turbulence decay.

Decay

The simplest and arguably most physically realistic formulation is to have the
decay term active whenever turbulence is active — whenever T > 0. For cal-
culating the actual rate of turbulence decay we can turn to a two-dimensional
κ transport equation such as the one recommended in Launder and Spaulding
([37], p. 77). Simplified to its bare essentials by neglecting the diffusion and
production terms, taking the Lagrangian point of view where Dκ/Dt = dκ/dt
and dividing out density, the resulting equation is

dκ

dt
∝ −1

`
κ

3
2 (18.80)

where the constant of proportionality is to be determined from pragmatic rea-
soning, as usual, and ` is a length scale proportional to the Prandtl mixing
length `m. (Prandtl mixing length is the length that makes turbulent shear

stress come out right in the expression τ = ρ`2m
∂u
∂y

2
.) Assuming that mixing

length scales with hydraulic diameter we have

dκ

dt
∝ − 1

dh
κ

3
2 (18.81)

We can write this in terms of T by substituting 0.0032u2T for κ (from equation
(18.65)) and taking normalization velocity u to be the absolute velocity |u|. The
turbulence decay rate then becomes

dT
dt

≈ −cd
|u|
dh

T 3
2 (18.82)

The value of cd is based on experimental data — specifically case b of [59], for
oscillatory flow with peak Reynolds number Rem = 47, 000 and Valensi number
Va = 29 In dimensionless terms the factor um/dh may be written ωRem/(4Va) ≈
400ω). Under these conditions, a value of cd ≈ 0.05 will produce an initial decay
rate ∂τ

∂ωt at τ = 1 of about −20, which is the desired value. The final decay
term in equation (18.66) is then

D =

{

0.05A |u|
dh

T 3
2 if T > 0

0 otherwise
(18.83)

Of some concern is how long it takes incoming turbulence to decay to zero
from the worst-case inlet value of Tin = 1, for flow with low Reynolds number
(Re < Rl). A long delay would be unrealistic. The time for the mean flow to
travel from the inlet to x = dh is dh/|u|. The change in turbulence over this
time is ∆T ≈ dT

dt
dh

|u| <= −0.05, from equation (18.82) with cd = 0.05. It follows

that relaminarization occurs within about 20 pipe diameter of the inlet. This
seems reasonable.

182 CHAPTER 18. GAS DOMAINS

Generation

Turbulence grows if the generation term is larger than the decay term and vice-
versa. Theoretical turbulence modelers (see Patankar [47]) suggest that this
rate should be proportional to ∂u

∂r , which scales as |u|/dh, or in dimensionless
terms ωRe/(4Va). A pragmatic approach can be used to decide the constant of
proportionality. It should be large enough so that, for relatively high values of
|u|/dh (= ωRe/(4Va)) turbulence will be generated quickly, but not too quickly
lest the solution become unstable or too difficult to properly resolve in the
computational grid. More importantly, the growth rate should approach the
decay rate as T → 1 (full turbulence) to limit turbulence to T = 1. The
following generation equation does that:

G =

{

0.05A
|u|
dh

(2 − T)S if Re > Rt and T < 2

0 otherwise
(18.84)

The “2” in 2−T is arbitrary. With that choice the leading factor 0.05 produces
the same G value at T = 1 as the decay term D.

Smoothing function S, defined to be W ((Re/Rt − 1)/4), where W is the
weight function (18.61), allows the generation term come in smoothly, starting
at Re = Rt. Generation is half active (S = 0.5) at Re = 3Rt and fully active
(S = 1) at Re ≥ 5Rt. The factor 4 was calibrated to experimental observations
of turbulence transition reported in [59].

When growth is fully active the initial turbulence growth rate ∂T
∂ωt at T = 0

is around 0.025Rt/V a. According to stirling engine practice in the 1980’s pub-
lished in the survey [57], the average value of Valensi number for heat exchangers
is Va ≈ 100, at which value the transition Reynolds number of equation (18.79)
is Rt ≈ 8 × 103 (for ω(t − t0) = π/2). That puts the average dimensionless
initial rate of turbulence growth on the order of 2 (similar to the maximum rate
of change of the 2nd harmonic), with the rate increasing as Reynolds number
increases.

Numerical Boundaries

With the above formulations for decay and generation, turbulence differential
equation (18.66) can lead to turbulence values above out of the desired range
[0, 1] in some cases. To avoid this problem Sage adds an extra term L to the
right-hand side of equation (18.66) that serves to prevent turbulence from drift-
ing too far out of range.

L =

0.05Aum

dh
T 2 if T < 0

−0.05Aum

dh
(T − 1)2 if T > 1

0 otherwise

(18.85)

um is the peak absolute velocity which for sinusoidal flow with amplitude u1

and time-average offset u0 is

um = u1 + |u0| (18.86)

18.8. TURBULENCE MODELS 183

Figure 18.7: Flow reversal times (at zero velocity) for offset sinusoidal flow
compared to pure oscillatory flow. Dots along dashed line segments show ap-
proximate flow reversal times.

Steady or Non-Reversing Flow

In closed-loop flow simulations it is possible to model steady flow by driving the
flow with a mass-flow pump component (chapter 22) with a non-zero mean value,
or pulsatile flow with both steady and oscillating components by non-zero higher
harmonics. As far as turbulence modeling goes the critical distinction between
oscillatory flow and quasi-steady flow (steady or pulsatile) is whether or not the
flow reverses direction for part of the cycle. If it does, Sage presumes the flow
is oscillatory and governed by the above turbulence model. If it does not, Sage
presumes the flow is quasi-steady and governed by the above turbulence model
with one simple revision. Namely the critical Reynolds number is presumed
to be the steady-flow value Rt = 2300. This is the limiting case of equation
(18.79) when Valensi number Va → 0 and the dimensionless time since flow
reversal ω(t − t0) → ∞. The generation and decay terms are the same as
before.

Sage decides whether flow is oscillatory or quasi-steady based on the rel-
ative sizes of the time-average velocity u0 and the sinusoidal first-harmonic
approximation u1. Whenever |u0| > u1 Sage presumes the flow is quasi-steady,
otherwise oscillatory.

Figure 18.7 shows the case of sinusoidal oscillatory flow without and with
a small time-average offset. For the offset case the flow reversal dimensionless
times are shifted by amounts ∆τ . Since high precision is not required the
sinusoidal variation between mean and peak velocity are approximated as line
segments with slopes ±2/π (dashed lines of figure). The shifts of the zero-

184 CHAPTER 18. GAS DOMAINS

crossings for an offset u0 are approximately

∆τ ≈ ±π/2 u0

u1
(18.87)

This gives the correct values at u0/u1 = 0 and 1.

18.8.3 Variable Volume Gas Domains

In variable-volume gas domains, incoming flow separation produces turbulence
which mixes throughout the cylinder space uniformly and dominates all other
sources of turbulence. At least, that is the assumption.

In addition to the main x−t solution grid, variable volume gas domains have
a special t-only grid that maintains volume V and turbulence kinetic energy ρκ
as state variables. Volume is just

V (t) = A(t)L (18.88)

κ is again the time-averaged turbulence kinetic energy per unit mass defined by
equation (18.64).

According to Gedeon [14] and [15], correlations for Nusselt number Nu and
enhanced axial conduction ratio Nk may be formulated directly in terms of the
turbulent Reynolds number Rt defined as

Rt = ρ
√
κdh/µ (18.89)

Volume-specific turbulence kinetic energy is just ρκ. Because of the uniform
mixing assumption there is no spatial variation in ρκ. Therefore, a time ring
(special time grid for periodic solutions where the first index is logically identi-
fied as the successor to the last index) rather than a space-time grid suffices for
its storage and an ordinary time-differential equation suffices for its solution

∂ρκV

∂t
+ [ρuAκ]

out
in

︸ ︷︷ ︸

inflow

+ D
︸︷︷︸

decay

= 0 (18.90)

Compared to the duct turbulence equation, we have replaced the convection
term by the net turbulence kinetic energy entering through the flow inlet(s) and
neglected the generation term.

Inlet Boundary Conditions

We assume that for incoming flow, the inlet mean-flow kinetic energy is con-
verted entirely to turbulence kinetic energy — that is, κi = 1/2u2

i , where the
i subscript denotes an inlet value. Velocity ui is just the mean-flow velocity
in the upstream gas duct. For outgoing flow we naturally assume κi takes the
interior value κ. We do not need to worry about the discontinuity in κi at
the time of flow reversal because we are interested only in the product ρuAκi,

18.9. FLOW REVERSERS 185

which is always zero at flow reversal. For inlets connected to multiple gas ducts,
we calculate κi at each connection according to the previous equation. Then
we sum ρuAκi over all connectors to obtain the net flow of turbulence kinetic
energy through the inlet.

Decay

For turbulence decay we assume a similar form to the decay rate for duct flow,
as given by equation (18.81), except we keep decay active at all times during the
cycle. The following decay rate contains a calibrated leading factor that was fit
to data for cylinder heat transfer with inflow-produced turbulence, as reported
in [6].

D = 5.8

√
κ

dh
ρκV (18.91)

18.9 Flow Reversers

TGtRevrsNeg

TGtRevrsPos

These components serve as special “gas domains” that connect together two
negative-facing or positive-facing gas inlets using built in flow-connectors, both
directed positively or negatively as the case may be. They provide a simple
means to reverse flow direction which otherwise would require an ad-hoc dead-
ended volume component. Essentially, these components just pass information
across flow connectors so that the two gas inlets at the far ends of the connectors
effectively see each other. Except that velocity is reversed in the process.

Flow reversers make it possible for the temperature gradients to be in the
same direction in the two gas ducts exchanging heat with each other within a
parallel container or multi-length container. For example, see the 6KJTLoop
sample model in the Apps\SCFusion\Samples\Joule-Thomson sub-directory un-
der the installation directory.

The only input variable for flow reversers is the temperature

Tinit : (real, K) Initial temperature. Used only for initializing or re-initializing
solution variables ρ and ρe. As such, its value does not affect the final
converged solution, but it may affect whether the solution converges at
all. It should be set to a value consistent with the initial temperatures of
adjacent components.

There are no output variables.

18.9.1 Theory

The job of a flow reverser is not completely trivial because it must adhere to
the solution conventions imposed by Sage’s flow connector scheme (see chapter
18). Basically there needs to be a way to force incoming mass flow rate (ρuA)
to equal outgoing mass flow rate. So flow reversers must implement at-least one
implicit solution grid variable for this purpose. Having done that they must take
additional steps to ensure energy continuity (because local solution values are

186 CHAPTER 18. GAS DOMAINS

now decoupled from the incoming values). In the end, flow reversers implement
a simplified version of the solution scheme used in flow restrictors (see chapter
22). They contain a time grid with state variables ρ, ρe, and P , governed by
equations of mass continuity and energy continuity.

ρ

Mass density ρ is computed implicitly from the zero-volume mass-continuity
equation

(ρuA)1 + (ρuA)2 = 0 (18.92)

where (ρuA)1 and (ρuA)2 are the values imported from flow connectors 1 and
2. This forces mass flow rate in two flow connectors to be equal but opposite.
Implicit functions used for solving ρe also help to determine ρ.

ρe

Basically, energy density ρe is computed implicitly from the energy continuity
equation written in the form

ρe+ P

ρ
= hi (18.93)

where ρe and P on the left are internal state variables while hi on the right is the
mass-specific enthalpy evaluated using variables imported from the component
across the incoming flow connection. For an ideal gas h reduces to cpT in the
zero-velocity limit where kinetic energy may be neglected.

For numerical reasons it is convenient to separate ρe into two variables ρe1
and ρe2 . ρe1 is exported to flow connector 1 and ρe2 to flow connector 2.
Each is guaranteed valid at the right time — ρe1 whenever flow is incoming
from connector 2 and vice-versa for ρe2 . The reason for this formulation is
because the implicit function determining either can be formulated without a
discontinuity at flow reversal, as would otherwise be the case. That is, the
equation for determining ρe1 is always that local mass-specific enthalpy ρe1+P1

ρ
equals the hi value imported across connector 2. this enforces energy continuity
when flow is incoming from connector 2 and otherwise does no harm. A similar
equation determines ρe2. The meaning of P1 and P2 is similar to the meaning
of ρe1 and ρe2, and is explained below.

It might be tempting to use these continuity conditions instead to calculate
ρe1 and ρe2 explicitly. This will not work because of a circular reference when
accessing P , which itself depends on ρe.

P

Pressure is also broken into two components P1 and P2, similar to the treatment
for ρe. P1 is exported to the flow connector 1 and P2 to flow connector 2.
Both are calculated explicitly from the equation of state P (ρ, T). This requires
temperature which is calculated from the zero-velocity equation of state. For

18.9. FLOW REVERSERS 187

evaluating P1 the temperature is calculated as T (ρ, ρe1, 0). For evaluating P2 it
is calculated as T (ρ, ρe2 , 0). (The 0’s in the argument lists are velocity) Pressures
is required in the solution grid so that the flow connectors can properly enforce
Bernoulli’s law across the connections.

Why zero velocity? Basically, velocity is irrelevant to mass or energy con-
servation. The only thing velocity determines is the pressure shift across the
flow connectors, according to Bernoulli’s law. But any pressure shift across the
incoming-flow connector, produced by the velocity in the flow reverser, is can-
celed by an opposite pressure shift across the outgoing-flow connector. So flow
reverser velocity does not matter and it is convenient to assume the simplest
thing: zero velocity.

188 CHAPTER 18. GAS DOMAINS

Chapter 19

Canisters

Canisters are the containers into which you normally put a matrix-type heat-
exchanger. But you can fill them with more than that. You can drop in a
radiation transport path for modeling radiant heat transport from one end to
the other, which makes sense if the contents are sufficiently transparent. Or,
you can drop in a bar or distributed conductor for modeling axial conduction
in the canister walls. Some canisters even allow you to nest other canisters
within them, which can be useful for modeling pistons or displacers within
cylinders (see chapter 24). All of these attributes arise as toolbox-created child
components, at your discretion. The main purpose of canisters is to pass on
critical geometry-dependent information to these child components when you
create them. The child components within canisters and they way they are
connected to the outside world are what really matters.

All canisters are high level components that appear in the toolbox of the
root-level SCFusion model component. They are born without connectors of
any sort. To get connectors at this level you must move them up from the
various child components you create within. Variables common to all canisters
are:

NCell : (dimensionless) The number of spatial nodes in the computational grids
of all underlying model components having such grids. Changing this
variable causes these computational grids to re-initialize themselves. NCell
will affect the solution time and memory requirements, not to mention
solution accuracy. Treat it gingerly by making only gradual, small changes.

Length : (real, m) Canister length L in x direction.

Avoid : (real or cubic spline, m2) Canister void cross sectional (x-normal) area
Ac.

Asolid : (real or cubic spline, m2) Canister solid (wall) cross sectional area As.

Mass : (real, kg) Canister mass m, provided for use in constraints in case it is
part of a reciprocating mass system.

189

190 CHAPTER 19. CANISTERS

Solid : (enumerated) Solid (wall) material.

Tinit : (cubic spline, W) Axial temperature distribution T (x) where x = 0 is
the negative endpoint and x = 1 is the positive endpoint.

The working gas type (properties) comes from the parent model component.
All canister types calculate mass as

m = ρs

∫

dx

As (19.1)

where ρs is the solid density. Dependent variables Avoid and Asolid are calcu-
lated differently for each of the descendant canister types below, in terms of
geometrical inputs. When they do not vary with x (axial coordinate) they are
single-valued real variables. When x variation is allowed they are cubic splines.

19.1 Tubular Canister

TTubCan

A tubular canister is a right circular cylinder, just as its icon suggests. Its
additional variables are:

Din : (real, m) Canister internal diameter di.

Wcan : (real, m) Wall thickness w.

It calculates void cross-section area as

Ac =
π

4
d2

i (19.2)

and solid cross-section area as

As =
π

4
(d2

o − d2
i) (19.3)

where do = di + 2w is outer diameter.
There is a close descendant of a tubular canister known as a nested tubular

canister. It shares the same icon as a tubular canister but is intended for nesting
within another canister so that variables NCell, Length, and Tinit come from the
parent canister and do not appear in its variable list. Its inner diameter Din
becomes a dependent variable based on the assumption that its outer diameter
equals the inner diameter of the parent canister. In other words, a nested
canister always fits snugly within its parent canister.

19.2 Annular Canister

TAnnCan

An annular canister is the volume enclosed by two concentric right circular
cylinders. Its additional variables are:

Din : (real, m) Inner-wall internal diameter di.

19.3. TUBULAR-CONE CANISTER 191

Dout : (real, m) Outer-wall outside diameter do.

Win : (real, m) Inner-wall thickness wi.

Win : (real, m) Outer-wall thickness wo.

It calculates void cross-section area as

Ac =
π

4

(
(do − 2wo)

2 − (di + 2wi)
2
)

(19.4)

and solid cross-section area as

As =
π

4

(
d2

o − (do − 2wo)
2 + (di + 2wi)

2 − d2
i

)
(19.5)

There is a close descendant of an annular canister known as a nested annular
canister. It shares the same icon as an annular canister but is intended for
nesting within another canister so that variables NCell, Length, Dout and Tinit
come from the parent canister and do not appear in its variable list. A nested
canister always fits snugly within its parent canister. Its outer wall outside
diameter Dout equals its parent canister inner diameter Din.

19.3 Tubular-Cone Canister

TTubxCan

A tubular-cone canister is similar to an ordinary tubular canister except its
internal diameter and wall thickness are specified by cubic splines. In other
words, both may vary with axial position. The variation may be a good deal
more complex than linear, depending on the number of interpolation pairs you
specify for the variables:

Din : (cubic spline, m) Canister internal diameter di.

Wcan : (cubic spline, m) Wall thickness w.

A powerful option now presents itself: Din and Wcan, may be optimized! At least
any data value in any of their defining interpolation pairs may be optimized.
Say, for example, you want to find the optimum diameter profile for a tubular-
cone regenerator canister specified by three interpolation pairs. Then you would
select as optimized variables Din.FData.1, Din.FData.2 and Din.FData.3. Like-
wise, you may also map either variable.

Tubular-cone canisters calculate void cross-section area Ac and solid cross-
section area As using equations (19.2) and (19.3), similar to ordinary tube
canisters, except di and do are taken as functions of axial position. What
actually happens is that tubular cones override variables Avoid and Asolid as
dependent cubic splines. These splines are each defined by n data pairs (x, A(x))
equal spaced in x within the interval [0, 1], where n is the larger of the number
of data pairs in the specification of Din or Wcan. This is self-evident in the
display form or listing.

192 CHAPTER 19. CANISTERS

There is a subtlety here worth noticing: The resolution of Avoid or Asolid are
only as good as the resolution of Din or Wcan. If you specify a linear diameter
profile (a true cone) by the interpolation pairs (0, 0.05) and (1, 0.10) for Din, for
example, you might think that Ac would then have a quadratic profile since it
depends on d2

i . You might be wrong. If the Avoid cubic spline is also defined
by only two interpolation pairs, it will also have a linear profile. This is of some
concern because the solutions of child model components within the canister
(gas and solid domains) generally regard area as the fundamental quantity, not
diameter. So your linear diameter profile is actually modeled as if it were a
square-root profile. To increase accuracy you might want to specify Din with
three, or more interpolation points, even though it may be linear.

19.4 Annular-Cone Canister

TAnnxCan

An annular-cone canister is an extension of an ordinary annular canister in the
same way a tubular cone was an extension of an ordinary cone. Now all of the
following inputs are specified as cubic splines:

Din : (cubic spline, m) Inner-wall internal diameter di.

Dout : (cubic spline, m) Outer-wall outside diameter do.

Win : (cubic spline, m) Inner-wall thickness wi.

Win : (cubic spline, m) Outer-wall thickness wo.

Any or all of these may be mapped or optimized by specifying the appropriate
FData.n qualifier as discussed above.

Annular cones calculate void cross-section area Ac and solid cross-section
area As using equations (19.4) and (19.5), similar to ordinary annular canisters,
except all the d’s and w’s are taken as functions of axial position. This takes the
form of overriding Avoid and Asolid as dependent cubic splines using the same
logic as for tubular cones, discussed above. And the same cautionary remarks
apply as well. Namely, that two-point linear diameter profiles may produce
linear, not quadratic, area profiles.

Chapter 20

Heat Exchangers

Heat exchangers are the containers — or sub-containers if they are themselves
found within a canister — into which you normally put a gas-domain and one
or more thermal-solid model components. Their main purpose is to pass on
critical geometry-dependent information to these child components when you
create them. Stand-alone heat exchangers appear in the toolbox of the root-level
SCFusion model component, while those needing containers appear in canister
toolboxes. They are born without connectors of any sort. To get connectors
you must move them up from the various child components you create within.
Variables common to all heat exchangers are:

NCell : (dimensionless) The number of spatial nodes in the computational grids
of all underlying model components having such grids. Changing this
variable causes these computational grids to re-initialize themselves. In-
creasing NCell generally increases solution accuracy at the cost of greater
solution time.

Length : (real, m) Heat exchanger length L in x direction. For a variable-
volume heat exchanger this is a rough estimate of the mean flow-path
length of a typical fluid particle — the path length from the inlet to a wall
boundary. No need to be overly exact because thermal performance is not
very sensitive to L in variable-volume heat exchangers.

Roughness : (dimensionless) Relative roughness of the surface in contact with
the gas, defined as the average height ε of surface irregularities divided by
the hydraulic diameter dh (i.e. tube diameter or twice the gap for parallel
plates). Required as an input only for heat-exchangers having uniform flow
passages, where it is important for determining turbulent flow resistance.
According to [32], the height ε is the average distance between low and high
points on the surface, rather than the average distance from high points to
the mean surface. Multiplying Machinery’s Handbook [45] peak-to-mean
roughness values by two suggests the following absolute roughness values
for various manufacturing processes:

193

194 CHAPTER 20. HEAT EXCHANGERS

Process ε (microns)
cold-rolling 2 to 6
drawing 2 to 6
extruding 2 to 6
drilling 3 to 13

So for example, a drawn seamless tube with 3 mm ID could be expected
to have a relative roughness in the range of 0.001 to 0.002. A drilled hole
of the same diameter as much as 0.004.

Aflow : (real, m2) Mean flow cross sectional (x-normal) area Af . Void volume
divided by length.

Asec : (real, m2) Mean solid cross sectional area As. (see equation (17.15) in
chapter 17)

Pwet : (real, m) Wetted perimeter Sx. The surface area per unit length for
gas-to-solid heat transfer.

Tinit : (cubic spline, W) Axial temperature distribution T (x) where x = 0 is
the negative endpoint and x = 1 is the positive endpoint.

Matrix type heat exchangers have the additional variable

Porosity : (real, dimensionless) Porosity β. Void volume divided by total vol-
ume. Total volume is void plus solid volume.

Matrix heat exchangers calculate mean-flow cross section area Af as the product
of porosity and canister cross-sectional area Ac.

Af = βAc (20.1)

Duct and variable-volume type heat exchangers have the additional variable:

Twall : (real, m) Wall thickness tw. Usually a non-critical variable used in
determining solid cross-sectional area for some thermal-solid child compo-
nent.

Every heat exchanger component comes with a unique gas-domain component in
its toolbox. This domain is a descendant of either the matrix, duct or variable-
volume type of gas domain and shares an icon with its ancestor object. The gas-
domain is unique because it knows the specific correlations for friction factor,
Nusselt number and axial conductivity ratio appropriate for the parent heat
exchanger type. These correlations are documented below as part of the heat-
exchanger documentation. Correlations are in terms of the following variables:

195

dh hydraulic diameter defined by equation (18.5)
β porosity; void / total volume
ε average height of surface irregularities (see Roughness

above)
Va Valensi number defined by equation (18.6)
Re Reynolds number defined by equation (18.4)
Pr cpµ/k; Prandtl number
Pe RePr; Peclet number
Rt turbulent Reynolds number defined by equation (18.89)

20.0.1 Solid Tortuosity

Matrix type heat exchangers implement a tortuosity function for solid-mode
axial thermal conduction. This function accounts for the possibility of a com-
plicated solid conduction path which typically zig-zags through the matrix and
bridges a number of contact points between particles or wires. The tortuosity
function is inherited by the wall-surface child component within the porous ma-
trix. The child component calls the tortuosity function from within its compu-
tational grid and uses the result to correctly model solid-mode axial conduction.
The wall-surface child component displays the average tortuosity as an output
(see sections 17.7.3 and 17.8). The discussion below is a condensed version of a
more detailed account in memorandum [20].

Definitions

Static conduction down a porous matrix (total inside the canister, not including
the canister) can be represented in terms of an average matrix conductivity kav

Qt = kavAc
dT

dx
(20.2)

where Ac is the matrix canister frontal area. Compare this to the static conduc-
tions down gas and solid uniform bars of cross-section areas βAc and (1−β)Ac,
corresponding to the void and filled parts of the matrix in the simplest of models

Qg = kgβAc
dT

dx
(20.3)

and

Qs = ks(1 − β)Ac
dT

dx
(20.4)

kg and ks are the gas and solid conductivities and β is matrix porosity (void
fraction). Generally the total matrix conduction is less than the sum Qg +Qs.
Sage models the static gas conduction according to the first equation (20.3) but
discounts solid conduction by a tortuosity factor to make the total conduction
come out right. The tortuosity factor is defined as

fs ≡ Qt −Qg

Qs
≡ kav − kgβ

ks(1 − β)
(20.5)

196 CHAPTER 20. HEAT EXCHANGERS

Calibrated Formulation

The difficult thing is figuring out the average matrix conductivity kav. Sage
starts with a basic formula for the average thermal conduction of a matrix
consisting of spheres embedded in a medium of different conductivity, based
on an example in Carslaw and Jaeger ([7], pp. 426–428). Victorian physicist
James Clerk Maxwell (of Maxwell’s equations) actually derived the formula for
induced magnetization in a sphere placed in a uniform external field but the
governing equations are the same for heat flow. When reduced to the form of
a tortuosity factor according to the above definition (20.5) and multiplied by a
calibration factor of the form (ks/kg)

m the final tortuosity formulation is

fs =

(
ks

kg

)m−1 [
3(ks/kg − β) + (2 + ks/kg)β

3(1− β) + (2 + ks/kg)β

]

(20.6)

The above equation with m = 0 corresponds to the original Maxwell conduction
model. For particular matrices Sage uses calibration exponents fit to NIST
data in [40] (see below under particular matrix heat exchanger types). The
Maxwell conduction model assumes high contact resistance between individual
solid elements of a matrix. So it is not suitable for wrapped-foil matrices or any
matrix with continuous solid elements in the axial direction.

20.0.2 Gas Axial-Conduction Enhancement

For complicated gas flows with microscopic details smaller than a computational
grid can resolve Sage resorts to the mechanism of enhanced gas conduction to
model at least some of the macroscopic thermal energy transport (the remain-
der being modeled as bulk enthalpy transport, based on the section-mean gas
temperature and mass flow rate). Enhanced gas conduction is represented in
terms of a dimensionless ratio

Nk ≡ ke/kg (20.7)

where ke is the effective gas conductivity and kg is the molecular conductivity.
Sage resorts to enhanced gas conduction for turbulent flows and also for flows
through porous material. The former is typically known as turbulent conduction
and the latter as thermal dispersion. Of the two, thermal dispersion is probably
the more unfamiliar concept.

The limiting value ofNk for zero flow velocity isNk0 = 1.0. This is consistent
with the above tortuosity formulation for solid-mode conduction and results in
the correct overall matrix static conduction (gas + solid).

Thermal Dispersion

One way to think about thermal dispersion is in terms of a experiment for an
analogous phenomenon in mass diffusion. Take a screen matrix filled with fluid
(say water) initially at rest and with a segment near the middle (bounded by

20.1. WOVEN SCREEN MATRIX 197

two planes) colored differently from the surrounding fluid. If you were to swim
through the matrix in the axial direction you would swim through clear water,
then suddenly enter colored water, then emerge a short time later into clear
water again. Now you can do two things. Thing one is to just let the experiment
sit there with the fluid at rest. The colored and clear water will gradually diffuse
into each other, smoothing out the sharp-edged color boundary. This is the
mass-transfer analog of molecular conduction. Thing two is to start oscillating
the fluid back and forth through the matrix in the axial direction. In this case
the color boundary diffuses much faster than before due to the interaction of
high-velocity flow channels between the wires and low-velocity wakes behind the
wires. This is the analog of thermal dispersion.

20.1 Woven Screen Matrix

TScnMtx

The woven screen matrix component adds input variable:

Dwire : (real, m) Wire diameter dw.

It calculates wetted perimeter Sx as

Sx = 4(1 − β)Ac/dw (20.8)

where Ac is canister cross-section area. The following correlations are from
NASA Contractor Report [18] which documents oscillating-flow regenerator
tests made at Ohio University for the following stainless-steel woven-screen sam-
ples, over a range of peak Reynolds numbers from 1 to 3400:

200 mesh per inch wire diameter 53.3 microns (0.0021 in), porosity 0.6232

100 mesh per inch wire diameter 55.9 microns (0.0022 in), porosity 0.7810

80 mesh per inch wire diameter 94.0 microns (0.0037 in), porosity 0.7102

20.1.1 Friction Factor

The screen friction factor is a variation of the Ergun equation [43] with the
constant term replace by a term proportional to Reynolds number raised to a
negative but small exponent to better track observed reality at high Re.

f = 129/Re + 2.91R−0.103
e (20.9)

20.1.2 Nusselt Number

Nu = (1 + 0.99P 0.66
e)β1.79 (20.10)

198 CHAPTER 20. HEAT EXCHANGERS

20.1.3 Axial-Conduction Enhancement

Nk = 1.0 + 0.50P 0.66
e β−2.91 (20.11)

20.1.4 Tortuosity

Solid-mode tortuosity is calculated from equation (20.6) with calibration expo-
nent m = 0.165, based on fitting to data for stainless-steel and phosphor bronze
screens in [40].

20.2 Random Fiber Matrix

TFbrMtx

The random fiber matrix component adds input variable:

Dfiber : (real, m) Fiber diameter dw.

It calculates wetted perimeter using the same formula (20.8) as for woven
screens, presuming circular cross-section fibers. For non-circular fibers the wet-
ted perimeter and the following correlations will probably be wrong. As they
will if the fibers are not oriented perpendicular to the axial flow direction. The
correlations are based on oscillating-flow regenerator tests and data-reduction
procedures reported in NASA Contractor Report [18] along with more recent
tests for higher porosity matrices reported in memorandum [21]. The correla-
tions are derived from porosity-dependence curve fits to the best-fit modeling
parameters for the following round-wire test samples:

2 mil Brunswick inconel, wire diameter 52.5 micron, porosity 0.688

1 mil Brunswick stainless steel, wire diameter 27.4 micron, porosity 0.820

12 micron Bekaert stainless steel, wire diameter 13.4 micron, porosity 0.897

30 micron Bekaert stainless steel, wire diameter 31.0 micron, porosities 0.85,
0.90, 0.93, 0.96 (samples cut from same sheet of material and pressed to
different porosities)

24 micron Bekaert Fecralloy, wire diameter 24.3 micron, porosity 0.909

Wire diameters are typically mean effective values based on electron micro-
scope image measurements. The two Brunswick samples were tested in 1992–03
as documented in NASA Contractor report [18]. The 12 micron Bekaert sample
was tested under DOE funding in 2003. “Bekaert” refers to Bekaert Corpo-
ration, the company who made the random fibers and continues to do so as
of 2008. (Brunswick Corporation no longer is in the random fiber business.)
The 30 and 24 micron Bekaert samples were tested in 2006–2008 under fund-
ing provided by the NASA Headquarters Science Mission Directorate (via a
NASA Glenn Research Center Grant to Cleveland State University). The peak

20.2. RANDOM FIBER MATRIX 199

Reynolds numbers for the combined test ranged from about 1 to 3500. In the
correlations below porosity dependence is correlated in terms of

α ≡ β

1 − β

The correlations have been most recently updated in November 2008 (Sage
version 6) based on re-tests of high porosity samples as documented in [22] and
[23].

20.2.1 Friction Factor

f = a1/Re + a2R
a3
e (20.12)

where

a1 = 25.7α+ 79.8

a2 = 0.146α+ 3.76

a3 = −0.00283α− 0.0748

20.2.2 Nusselt Number

Nu = 1 + b1P
b2
e (20.13)

where

b1 = 0.186α

b2 = 0.55

20.2.3 Axial-Conduction Enhancement

Nk = 1.0 + b3P
b2
e (20.14)

where

b2 = same as above

b3 = 1.0

20.2.4 Tortuosity

Solid-mode tortuosity is calculated the same as for screens, namely from equa-
tion (20.6) with calibration exponent m = 0.165. There is no data to back this
up but the wires in random-fibers matrices are typically oriented perpendicular
to the axial flow direction, similar to screens.

200 CHAPTER 20. HEAT EXCHANGERS

20.3 Packed Sphere Matrix

TSphMtx

The packed sphere matrix component adds input variable:

Dsphere : (real, m) Sphere or particle diameter ds.

It calculates wetted perimeter Sx as

Sx = 6(1 − β)Ac/ds (20.15)

where Ac is canister cross-section area, presuming spherical particles. For non-
spherical particles the wetted perimeter and the following correlations will prob-
ably be wrong.

The following correlations are based on unpublished oscillating-flow regen-
erator tests using essentially the same hardware and procedures as documented
in NASA Contractor Report [18]. The material tested was 173 micron diame-
ter spherical lead particles (173 micron mean diameter ± 14 micron standard
deviation) packed to porosities in the range 0.38 to 0.43.

20.3.1 Friction Factor

f =
(
157/Re + 5.15R−0.137

e

)
(β/0.39)

3.48
(20.16)

20.3.2 Nusselt Number

Nu = 1 + 0.48P 0.65
e (20.17)

20.3.3 Axial-Conduction Enhancement

Nk = 1.0 + 3.00P 0.65
e (20.18)

20.3.4 Tortuosity

Solid-mode tortuosity is calculated from equation (20.6) with calibration expo-
nent m = 0.145, based on fitting to data for lead, stainless-steel and copper
spheres in [40].

20.4 Wrapped Foil Matrix

TFoiMtx

The wrapped foil matrix component adds input variables:

Gap : (real, m) Gap g between foil layers.

Thk : (real, m) Foil thickness b.

20.4. WRAPPED FOIL MATRIX 201

It calculates wetted perimeter Sx as

Sx = 2Af/g (20.19)

where Af is flow cross-section area according to equation (20.1). It calculates
porosity as

β =
1

1 + b/g
(20.20)

20.4.1 Friction Factor

The laminar case is based on exact theory for fully-developed flow and the
turbulent case is the Altshul approximation to the Colebrook formula with a
shape correction factor of 1.1, as recommended in [32] (pp. 8, 22).

• Case laminar
f = 96R−1

e (20.21)

• Case turbulent
f = 0.121 (ε/dh + 68/Re)

0.25
(20.22)

20.4.2 Nusselt Number

The laminar case is based on exact theory for fully-developed flow, uniform heat
flux, and the turbulent case is from figure 7.4 p. 146 of reference [35].

• Case laminar
Nu = 8.23 (20.23)

• Case turbulent
Nu = 0.025R0.79

e P 0.33
r (20.24)

20.4.3 Axial-Conduction Enhancement

Same as equations (20.42) and (20.43) for tubular ducts since the flow micro-
structure is likely to be similar.

20.4.4 Tortuosity

Solid-mode tortuosity is taken as fs = 1 (no tortuosity at all) which corresponds
to an uninterrupted solid conduction path.

202 CHAPTER 20. HEAT EXCHANGERS

20.5 Generic Matrix

TGnrMtx

A generic matrix component allows you to specify your own coefficients and
exponents within generic formulations for friction factor, Nusselt number, axial
conduction enhancement and tortuosity. The generic matrix component adds
input variables:

Dhyd : (real, m) Hydraulic diameter dh as in equation (18.5).

FsC1 : (real, dimensionless) c1 in tortuosity formulation (20.29).

FsC2 : (real, dimensionless) c2 in tortuosity factor formulation (20.29).

FdM : (real, dimensionless) m in tortuosity formulation (20.29).

It calculates wetted perimeter Sx as

Sx = 4Af/dh (20.25)

where Af is mean flow area βAc (porosity × canister area). Its associated gas
domain adds input variables:

FdC1 : (real, dimensionless) c1 in friction factor formulation (20.26).

FdC2 : (real, dimensionless) c2 in friction factor formulation (20.26).

FdC3 : (real, dimensionless) c3 in friction factor formulation (20.26).

FdM : (real, dimensionless) m in friction factor formulation (20.26).

NuC1 : (real, dimensionless) c1 in Nusselt number formulation (20.27).

NuC2 : (real, dimensionless) c2 in Nusselt number formulation (20.27).

NuM : (real, dimensionless) m in Nusselt number formulation (20.27).

NuN : (real, dimensionless) n in Nusselt number formulation (20.27).

KrC1 : (real, dimensionless) c1 in axial conduction enhancement formulation
(20.28).

KrC2 : (real, dimensionless) c2 in axial conduction enhancement formulation
(20.28).

KrM : (real, dimensionless) m in axial conduction enhancement formulation
(20.28).

KrN : (real, dimensionless) n in axial conduction enhancement formulation
(20.28).

20.6. TUBE BUNDLE 203

20.5.1 Friction Factor

The generic matrix friction factor is

f = c1 + c2R
m
e + c3/Re (20.26)

where c1, c2, c3 and m are input variables.

20.5.2 Nusselt Number

The generic matrix Nusselt number is

Nu = c1 + c2R
m
e P

n
r (20.27)

where c1, c2, m, n are input variables.

20.5.3 Axial-Conduction Enhancement

The generic matrix axial conductivity enhancement ratio is

Nk = c1 + c2R
m
e P

n
r (20.28)

where c1, c2, m, n are input variables.

20.5.4 Tortuosity

The generic matrix tortuosity factor is

fs = c1 + c2

(
ks

kg

)m−1 [
3(ks/kg − β) + (2 + ks/kg)β

3(1 − β) + (2 + ks/kg)β

]

(20.29)

where c1, c2 and m are input variables. This reduces to the Maxwell tortuosity
factor of equation (20.6) for c1 = 0 and c2 = 1. If that is not appropriate you
can specify specify a constant tortuosity with c1 > 0 and c2 = 0.

20.6 Tube Bundle

TTubDct

The tubular heat exchanger adds input variables:

Dtube : (real, m) Tube internal diameter di.

Ntube : (real, dimensionless) Tube number n. This can take on non-integer
values so that it can be optimized.

It calculates flow area as

Af = n
π

4
d2

i (20.30)

204 CHAPTER 20. HEAT EXCHANGERS

It calculates solid cross-section area in terms of outside diameter do (do = di +
2tw where tw is wall thickness) as

As = n
π

4
(d2

o − d2
i) (20.31)

And it calculates wetted perimeter as

Sx = nπdi (20.32)

20.6.1 Friction Factor

The laminar case is formulated in terms of the real and imaginary components
of the oscillating-flow wall-shear-stress function as discussed in section (18.6.1)
with s derived from the thermoacoustic function fν for circular tubes in ref-
erence [65]. The approximations below are defined piecewise from low-Va and
high-Va asymptotic limits, with the Valensi number dividing one branch from
the other chosen to make the two branches continuous. These approximations
are much easier to compute than the exact functions (complex Bessel functions)
and are accurate to within a worst-case relative error on the order of 25%. The
low Va laminar equivalent friction factor is f = 64/Re, according to equation
(18.21). The turbulent case is the Altshul approximation to the Colebrook
formula as recommended in [32] (p. 8).

• Case laminar

sr =

{
4 if Va ≤ 32
√

Va/2 if Va > 32
(20.33)

si =

{
Va/6 if Va ≤ 18
√

Va/2 if Va > 18
(20.34)

• Case turbulent

f = 0.11 (ε/dh + 68/Re)
0.25

(20.35)

20.6.2 Nusselt Number

The laminar case is broken into separate parts Nu0, Nuc and Nua — real and
complex Nusselt numbers that apply respectively to the steady, compression-
driven and advection-driven components of the gas-to-wall temperature differ-
ence, as discussed in section (18.6.2). These are based on piecewise-continuous
blended averages of low and high Valensi-number solutions presented in [16]
and also derived from [64]. The real-valued turbulent case is based on reference
[29] and there is no distinction made for the various components of temperature
difference.

20.7. RECTANGULAR CHANNELS 205

• Case laminar

Nu0 = 6.0 (20.36)

<(Nuc) =

{
6.0 if

√
2VaPr < 6.0√

2VaPr otherwise
(20.37)

=(Nuc) =

{
1
5
VaPr if VaPr < 5

√
2VaPr√

2VaPr otherwise
(20.38)

<(Nua) =

{
4.2 if

√
2VaPr < 8.4

1
2

√
2VaPr otherwise

(20.39)

=(Nua) =

{
1
10VaPr if VaPr < 5

√
2VaPr

1
2

√
2VaPr otherwise

(20.40)

• Case turbulent

Nu = 0.036R0.8
e (L/dh)−0.055P 0.33

r (20.41)

20.6.3 Axial-Conduction Enhancement

The laminar case assumes no enhancement beyond molecular conduction. The
turbulent case is based on a theoretical analysis that goes roughly as follows: In
turbulent flow the total fluid shear stress can be represented as τ = (µ+ µt)

∂u
∂y

where µ is the molecular viscosity, µt is the so-called turbulent viscosity and
y is the coordinate normal to the wall. For turbulent tube flow, µt can be
determined from the Blasius friction factor (f = 0.316R−0.25

e) and the known
velocity profile. Then, using a Reynolds-analogy type of argument, the enhanced
(turbulent) axial conductivity ratio (Nk) can be equated with Prµt/µ. After
the details have been worked out the resulting correlation is

• Case laminar

Nk = 1 (20.42)

• Case turbulent

Nk = 0.022R0.75
e Pr (20.43)

20.7 Rectangular Channels

TRecDct

The rectangular channel heat exchanger adds input variables:

Wchan : (real, m) Channel inner width wi.

Hchan : (real, m) Channel inner height hi.

Nchan : (real, dimensionless) Channel number n. This can take on non-integer
values so that it can be optimized.

206 CHAPTER 20. HEAT EXCHANGERS

It calculates flow area as

Af = nwihi (20.44)

It calculates solid cross-section area in terms of outer channel width wo and
height ho (wo = wi + 2b, ho = hi + 2tw, where tw is wall thickness) as

As = n(woho −wihi) (20.45)

And it calculates wetted perimeter as

Sx = 2n(wi + hi) (20.46)

Aspect ratio a is defined to be the smaller of wi/hi or hi/wi. In terms of a,
there are two geometrical parameters used in the following correlations

b = 1.47− 1.48a+ 0.92a2

c = 0.438 + 0.562(1− a)3

20.7.1 Friction Factor

The laminar case is similar to the case for tubes, with the factor b representing
the continuum between parallel plates and rectangular channels. The value of
b is about 1.5 (1.47 actually) for an aspect ratio of zero (parallel plates) and
0.91 for an aspect ratio of one (square channels). The approximations below
reduce to the above tube approximations for b = 1.0 and to the approximations
for parallel plates for b = 1.5 (except for a 10% error in the low-Va branch for
Si). The turbulent case is the Altshul equation, the same as for tubes.

• Case laminar

sr =

{
4b if Va ≤ 32b2
√

Va/2 if Va > 32b2
(20.47)

si =

{
Va/(6b) if Va ≤ 18b2
√

Va/2 if Va > 18b2
(20.48)

• Case turbulent

f = 0.11 (ε/dh + 68/Re)
0.25

(20.49)

Factor b is the result of a curve-fitting process for laminar friction factors, trace-
able to Terry Heames and associates at the Argonne National Laboratory [29].
The fact that b is not quite 1.0 for square channels is, perhaps, a reasonable ac-
counting of the differences between square channels and circular tubes. The fact
that b is not exactly 1.5 in the parallel-plate limit is likely a minor curve-fitting
error.

20.8. RECTANGULAR FINS 207

20.7.2 Nusselt Number

The laminar case is similar to that for tubes with different low-Valensi limits.
The turbulent case comes from reference [29].

• Case laminar

Nu0 = 10.0 c (20.50)

<(Nuc) =

{
10.0 c if

√
2VaPr < 10.0 c√

2VaPr otherwise
(20.51)

=(Nuc) =

{
1
5VaPr if VaPr < 5

√
2VaPr√

2VaPr otherwise
(20.52)

<(Nua) =

{
8.1 c if

√
2VaPr < 16.2 c

1
2

√
2VaPr otherwise

(20.53)

=(Nua) =

{
1
10VaPr if VaPr < 5

√
2VaPr

1
2

√
2VaPr otherwise

(20.54)

• Case turbulent
Nu = 0.035R0.75

e P 0.33
r (20.55)

In the laminar case, 10.0 and 8.1 are the recommended steady-flow compression-
driven and advection-driven values for parallel plates in [16] and scale factor c is
the above function of aspect ratio, which was obtained by curve fitting to data
in Kays and London [35] (fig 6-1, p. 120) for laminar rectangular-tube Nusselt
numbers, expressed as a fraction of the parallel-plate value, under constant
heat-flux boundary conditions.

20.7.3 Axial-Conduction Enhancement

Same as equations (20.42) and (20.43) for tubular ducts since the flow micro-
structure is likely to be similar.

20.8 Rectangular Fins

TFinDct

The rectangular fin heat exchanger is a minor variation of the rectangular duct
heat exchanger that uses the same type of gas domain but alters the solid vari-
ables passed to any child thermal-solid components. It presumes the rectangular
passages are formed by alternating rectangular fins. Accordingly, it adds the
input variable:

Tfin : (real, m) Fin thickness tf .

and overrides wall thickness tw (Twall) to be a dependent variable, calculated
as tf/2. That is, half the fin thickness is presumed to belong to the side-wall
of the adjacent duct. It calculates solid cross-section area as the fin-only cross
section

As = ntfhi (20.56)

208 CHAPTER 20. HEAT EXCHANGERS

where hi (Hchan) is the fin height. This gives any distributed-conductor child
model components the appropriate cross-section area for modeling fin conduc-
tion (see chapter 17). Note that solid cross section area does not include end
walls and fin height is presumed equal to channel height.

The correlations for f , Nu and Nk are the same as for rectangular channel
heat exchangers.

20.9 Generic Cylinder

TGnrCyl

The generic-cylinder variable-volume component adds variables:

Swet : (real, m2) Time-mean wetted surface S0. Not extremely critical since it
has only a secondary effect on the cycle pressure through the heat transfer
between the gas and wall. But there is also a thermodynamic irreversibility
associated with this heat transfer which affects overall efficiency somewhat.
As a rule of thumb, a value of Swet within fifty percent is good enough.
Too much accuracy is not justified because of the relatively large error
band for the Nusselt number correlation.

Volume : (real, m3) Baseline volume V0 when all volume-displacement attach-
ments are zero. Each volume displacement adds to the baseline volume. If
all volume displacements are phasors (attached to sinusoidal moving part
with zero mean) then V0 is the same as the time-mean cylinder volume.
Of primary importance since it directly effects the pressure ratio of the
machine. Relative accuracy within a few percent is recommended.

Sratio : (real, m) An output variable which expresses the time-mean surface
area S0 as a fraction of the surface area of a minimal-surface right-circular

cylinder with the same V0 (Smin = 5.54V
2/3
0). Useful for seeing if the Swet

you have entered is reasonable compared to the Volume, or for constraining
when optimizing Swet and Volume. If Sratio � 1, then your Swet is too
small. If Sratio � 1, then either your Swet is too large or your volume
has a lot of extra wetted surface area within it. Sratio has no effect on the
numerical solution so you may safely ignore it if you want.

Generic cylinders calculate time-mean flow area as

Af = V0/L (20.57)

They calculate solid cross-section area for use in thermal-solid child model com-
ponents as

As = twS0/L (20.58)

where tw is the wall thickness input and L is the length input.
The time-varying part of volume comes from volume-displacement child

model components of the associated variable-volume gas domain. The assump-
tion is that the length remains fixed but the flow area varies as a function of time
to produce the required volume variation. This makes the equations simpler.

20.9. GENERIC CYLINDER 209

20.9.1 Length

So what is the length anyway? There are two ways to look at it.

The first is in terms of the underlying gas domain model which consists of a
one dimensional passage of some length and cross-sectional flow area, as shown
in section 18.2. So the problem is how to represent a variable volume space as a
one dimensional passage? Here is one way: You specify the length as an input
variable — say the average length of a streamline between the entrance to the
space and its stagnation point on the opposite wall or moving piston face. Sage
then computes the cross-sectional area from the above formula. Although this
may seem somewhat arbitrary, it does not matter much. The length may vary
by an order of magnitude or so without producing much effect on the simulation
outputs. This is because nothing much in the variable-volume gas domain model
depends on length or flow area. Volume and wetted surface are the main things
that matter. So the recommendation is to pick a rough value of Length scaled
to the machine you are modeling and then forget about it.

The second way to look at length is in terms of the underlying solid wall
model. In the event the wall models an external conduction path where axial
conduction is an important feature, then this length might override the gas
domain length in modeling importance. In most cases, though, the solid wall
is thermally isolated from everything except the gas, in which case the solid
conduction length is irrelevant.

20.9.2 Friction Factor

The friction factor is set to f = 0 as a reasonable approximation for all likely
applications.

20.9.3 Nusselt Number

This correlation is taken from personal memoranda [14, 15, 17] which derived a
formulation for Nusselt number in SCFusion cylinder spaces, based on an ana-
lytic expression for wall heat flux in a gas undergoing compression and expansion
between parallel walls. In place of molecular conductivity, the derivation used
a turbulent conductivity, assumed to increase linearly with distance from the
wall. Flow into the cylinder was the source of turbulence.

The correlation is broken into real and complex parts Nu0, and Nu that
apply to the steady and fluctuating components of the gas-to-wall temperature
difference, as discussed in section (18.6.2). The steady part is, for lack of any
compelling evidence to the contrary, just the steady laminar Nusselt number for
tubes scaled by the spatial-mean ratio of turbulent to molecular conductivity
Nk. The complex part reflects a calibration developed in [17] of the analytic
expression for fluctuating wall heat flux for cylinders with inflow produced tur-
bulence reported in [6].

Nu0 = 6.0Nk (20.59)

210 CHAPTER 20. HEAT EXCHANGERS

<(Nu) =

√
2VaPr if Rt ≤ 7.7

√
2VaPr

0.13Rt

ln

(
0.35Rt√
2VaPr

) otherwise (20.60)

=(Nu) =
tanh(0.40/η)

1 + 3 η
<(Nu) (20.61)

where

η =

√

Rt

7.85VaPr
(20.62)

A correction (in Sage v12) improved this formulation for the case when
inflow produced turbulence is small (e.g. modeling a variable volume gas spring
without flow connections). For that case the above value for η can fall below
the theoretical value reported in [38] for heat transfer in cylinder spaces without
turbulence, where the theoretical value of η is

η =

√
8

VaPr
(20.63)

To correct that problem and also to avoid numerical noise in the solution caused
by noise in the Rt solution, Sage replaced the calculation of η using equation
(20.62) with the non-turbulent value of equation (20.63) below the cutoff value
Rt = 62.8. The cutoff value is the value of Rt where the right-hand sides of
equations (20.62) and (20.63) are equal.

20.9.4 Axial-Conduction Enhancement

According to a variation of the Prandtl mixing length hypothesis, turbulent
viscosity may be expressed in terms of turbulent Reynolds number as

µt

µ
= Rt

`

dh
(20.64)

where ` is a mixing length scale. Based on personal memorandum [17], a mean
representative value for `/dh in cylinder spaces is

< ` >

dh
≈ 0.014 (20.65)

Assuming that the turbulent Prandtl number is unity, the equation for enhanced
(turbulent) conductivity ratio becomes simply

Nk = 1 + 0.014Rt (20.66)

The leading constant covers the limiting case of Rt = 0.

Chapter 21

Compliance Ducts

Compliance ducts are similar to heat exchanger ducts except they are intended
to transfer PV power from one end to the other along a significant temperature
gradient while minimizing the thermal loss between the two ends. They are often
known as thermal buffer tubes because of this functionality. Sometimes they
are called pulse tubes. Compliance ducts are analogous to the heat-exchanger
geometries documented in chapter 20. They occur in the toolbox of the root-
level model component.

21.1 Duct Geometries

Compliance ducts are typically implemented as single tubes because of the need
to minimize heat transfer with the walls and other thermal losses for a given
flow area.

21.1.1 Compliance Tube

TTubComplDct

The compliance tube is a descendant of the stirling-class tube-bundle heat ex-
changer. The main difference is that it substitutes a compliance-duct gas do-
main in its toolbox (below) and adds a radiation-transport model component,
in case you want to model radiation transport along the tube. Wall conduction
is available in the thick-wall toolbox component already present.

From your point of view, you may think of a compliance tube as a special
sort of tubular container. Its variables are the same as those the tube-bundle
heat-exchanger model component. Most of the interesting stuff belongs to the
compliance-duct gas domain child component which you drop in from the com-
ponent palette.

21.1.2 Tapered Compliance Tube

TTubxComplDct

A tapered compliance tube is similar to an ordinary compliance tube except its
internal diameter and wall thickness are specified by cubic splines:

211

212 CHAPTER 21. COMPLIANCE DUCTS

Dtube : (cubic spline, m) Tube internal diameter.

Twall : (cubic spline, m) Wall thickness.

The main reason for using a tapered compliance tube is to reduce or elim-
inate streaming convection by taking advantage of the dA/dx dependence of
the effective wall-velocity uw, according to equation (21.17). The proper choice
of dA/dx will cancel the other term, thereby leading to zero streaming convec-
tion. Locally, at least. There may still be some variation of uw along the tube
length but it can generally be reduced compared to the case for uniform flow
area. The demonstrated reduction of streaming convection by compliance-tube
tapering has been reported by Olson and Swift in reference [46].

The implementation of the tapered compliance tube is similar to that of the
tubular-cone canister reported in chapter 19. Dependent variables Aflow, Asec
and Pwet (flow area, solid cross-sectional area and wetted perimeter also become
cubic spline variables instead of uniform values. These splines are each defined
by n data pairs (x, A(x)) equal spaced in x within the interval [0, 1], where n
is the larger of the number of data pairs in the specification of Dtube or Twall.
So, the resolution of the dependent variables is only as good as the resolution
of Dtube or Twall. In particular, if your intent is a nonlinear variation in flow
area (as in a simple conical tube) you must specify more than the endpoint
diameters in Dtube, even though it varies linearly with axial position. Specifying
Dtube interpolation pairs at the relative x coordinates 0, 0.25, 0.5 and 1.0 would
probably be sufficiently.

The turbulence transition model along with the heat-transfer and flow-
friction correlations are unchanged from those of uniform area ducts. This
is probably incorrect to some degree, with the result that heat transfer and
flow friction will probably be off a bit. This should not pose a problem for
compliance-tube modeling because these terms are generally small.

21.2 Compliance Duct Gas Domains

The compliance-duct type of gas domain descends from the duct-type gas do-
main documented in the chapter 18. The major difference is the special treat-
ment of the convective losses that arise in the duct in the presence of an axial
temperature gradient. These losses are critical because they carry thermal en-
ergy from the warm to the cold end of the compliance duct and degrade heat
lift.

The gas axial conduction term q now comprises molecular conduction qm,
turbulent conduction qt, free convection qf , boundary convection qb and stream-
ing convection qs, all considered in detail below. We can write this in dimen-
sionless form as

q

qm
= 1 +

qt

qm
+
qf

qm
+
qb

qm
+
qs

qm
(21.1)

where q/qm on the left is just the axial conductivity enhancement ratio Nk and
the terms on the right may be viewed as its component parts.

21.2. COMPLIANCE DUCT GAS DOMAINS 213

The variables of a compliance-duct gas domain are mostly the same as those
in any gas domain documented in 18. New variables are:

Tmult : (real, dimensionless) Empirical multiplier for turbulent conduction qt.

Cmult : (real, dimensionless) Empirical multiplier for free conduction qf .

TiltAngle : (real, rad) Inclination angle θ for free convection. θ = 0 for vertical
cold-end-down orientation. θ = 90 degrees for horizontal orientation and
θ = 180 degrees for unstable vertical cold-end-up orientation.

Gmult : (real, dimensionless) Gravitational field multiplier for free convection.
The external gravitational field relative to the value on Earth. Gmult = 1
corresponds to 9.8 m/s2.

Bmult : (real, dimensionless) Empirical multiplier for boundary convection qb.

Smult : (real, dimensionless) Empirical multiplier for streaming convection qt.

QmolMean : (real, W) t and x averaged molecular conduction flow qm.

QturbMean : (real, W) t and x averaged turbulent conduction flow qt.

QfreeMean : (real, W) t and x averaged free convection qf .

QoscMean : (real, W) t and x averaged boundary convection qb.

QstrMean : (real, W) t and x averaged streaming convection qs.

GvibMean : (real, m/s2) x averaged vibratory stabilization field gv of equation
(21.7) that tends to align density gradients along the duct axis. In free
convection gv opposes the free convection driven by the gravitational field
g.

The empirical multiplier inputs give you free reign to scale any of the enhanced
axial conduction mechanisms individually. They may still be scaled all-together
by the inherited duct-gas input Kmult. Outputs QmolMean, . . . , QstrMean are
components of the inherited output QxMean, not additional losses. Their sum
equals QxMean.

As of Sage version 11 there are two new inputs TiltAngle and Cmult (see
above), and the meaning of Gmult has been revised. In previous versions there
was no tilt angle input and setting Gmult to zero was the way to turn off or
scale free convection. Under version 11 Gmult always refers to the external
gravitational field and Cmult serves as an overall scale factor you can use to
calibrate Sage to any free convection data you may have. Gmult and TiltAngle
should be set according to the operating environment based on the examples of
this table:

214 CHAPTER 21. COMPLIANCE DUCTS

Environment Gmult TiltAngle (degrees)
Cold end down – on Earth 1 0
Cold end up – on Earth 1 180
Cold end down – on Moon 0.16 0
Weightless 0 NA

The role of the compliance tube is to transfer the PV work of expansion
from the cold end of the compliance tube to the warm end, thereby sucking
heat out of the cold source, according to a first-law energy balance. Ideally this
happens in the absence of any wall heat transfer or fluid mixing and the gas
within the compliance tube oscillates back and forth with a uniform velocity
profile across the tube cross section. Of course, in reality, there is wall heat
transfer, fluid mixing and a non-uniform velocity profile. There may even be
turbulence in ill-designed compliance tubes. All these real-world phenomena
buck the ideal enthalpy flow with oppositely-directed convective losses. In any
particular design instance, some may be small and some may be large, but
prudent analysis demands we evaluate them all. That way none are liable to
grow out of bounds during optimizations.

21.2.1 Turbulent Conduction

Turbulent conduction qt is the same as that reported for axial-conduction en-
hancement in tube-bundle heat exchangers in chapter 20. Repeated here for
convenience, the correlating expression is

qt

qm
= 0.022R0.75

e Pr (21.2)

21.2.2 Free Convection

Note: This is a revised formulation as of Sage version 11. Compared to earlier
formulations it includes tilt angle dependence and the suppression effect of high
frequency oscillatory flow.

A gravitational field acting upon the temperature-induced density gradient
within a compliance tube can produce buoyant instability that leads to free
convection cells. Free convection is only a problem in compliance tubes oriented
with the cold end higher than the warm end.

For correlating free convection the key dimensionless group is the Grashof
number, defined here as

Gr =
gρ2L4

µ2

Tx

Tavg
(21.3)

where g is the acceleration of gravity, ρ is mean fluid density, L is tube length, Tx

is the spatial temperature gradient and Tavg is the spatial-average temperature.

In the above definition, the coefficient of fluid thermal expansion β = −1/ρ ∂ρ
∂T |P ,

which normally appears in the definition of Grashof number, has been replaced
by its ideal-gas value 1/T .

21.2. COMPLIANCE DUCT GAS DOMAINS 215

Tilt Angle Dependence

For a tilted pulse tube the component of gravity in the direction of the tube
axis is −g cos θ, where θ is the tilt angle measured from θ = 0 at cold-end-down
orientation. −g cos θ has the value g at θ = 180 degrees and drops to zero at
θ = 90 degrees. So as a first correction to capture the effects of pulse-tube tilt
angle it is reasonable to substitute −g cos θ for g in the Grashof number. This
makes sense for a narrow tube but for a wide tube there will still be some free
convection because parts of the cold end are still higher than parts of the warm
end at θ = 90 degrees. The angle where all of the cold end is lower than all
of the warm end is 90 − arctan(D/L) degrees. So it makes sense instead to
replace g in the Grashof number with −g cos θ∗, where θ∗ is an effective tilt
angle defined as (in degrees)

θ∗ = min(θ + arctan(d/L), 180) (21.4)

Apart from affecting the Grashof number the tilt angle also affects the boundary
conditions that shape the overall convective flow within the tube. Free convec-
tion in tilted pulse tubes is not highest at a tilt angle of 180 degrees as one
might expect. Rather it is around twice as high at a tilt angle on the order of
135 degrees according to measurements by Swift and Backhaus in reference [66]
and Ross & Johnson in reference [54]. This may be due to the shape of the con-
vection cell changing from axi-symmetric toroidal to an anti-symmetric shape
where flow is upward on the high side of the tube and downward on the low side,
similar to flow in a ketchup bottle. Whatever the reason, Sage includes in its
formulation for free convection a scaling factor F (θ) derived from a quadratic
curve fit to the tilt-angle dependence measured in references [66] and [54].

F (θ) = 2.12− 1.62(θ− 2.31)2 (21.5)

where θ is in radians. By design, for cold-end-up orientation F (π) = 1.0. The
fit to data is not especially good so errors on the order of 50% are not out of
the question.

Vibratory Stabilization

Besides the effects of tilt angle there is also an oscillatory flow mechanism that
tends to align density gradients along the direction of vibration. For this reason
high-frequency pulse tubes can often operate in any orientation without any free
convection loss. Swift and Backhaus [66] developed a theoretical framework for
this vibratory stabilization mechanism and ran experiments to validate their
theory. Gedeon memorandum [26] discusses this vibratory stabilization mech-
anism in detail and derives a stability condition, namely, convectively stable
if

− g cos θ∗ < 0.74
a2ω2

(L+ d)

(|∆T |
Tavg

)1/2

(21.6)

where a is the section-mean fluid amplitude, ω is the angular frequency and
∆T is the end-to-end temperature difference. The leading coefficient provides

216 CHAPTER 21. COMPLIANCE DUCTS

a reasonable fit to measured data. The right hand side is interpreted as a
stabilizing vibratory acceleration

gv ≡ 0.74
ω2a2

(L +D)

(|∆T |
Tavg

)1/2

(21.7)

The Sage formulation assumes that the net difference (−g cos θ∗ − gv) is what
drives the free convection, so the original factor g in the Grashof number is
replaced with the effective value

ge = max [(−g cos θ∗ − gv), 0] (21.8)

In other words, the effective gravitational acceleration is (−g cos θ∗−gv), except
zero (stable) if negative.

Free Convection Formulation

Sage calculates free convection qf using a correlation by Hollands in reference
[30], modified according to the above considerations. Normalized by molecular
conduction the Sage correlation is:

qf

qm
= 0.20X

(

1 − e1.19
(Xc−X)

Xc

)

F (θ) (21.9)

where
X = R1/3

a (21.10)

and Xc is the critical value of X, to be explained shortly. Free convection is zero
(molecular conduction only) for X ≤ Xc. Rayleigh number Ra is the product
of effective Grashof and Prandtl numbers

Ra = GrePr (21.11)

where effective Grashof number is calculated in terms of the above effective
gravitational field ge as

Gre =
geρ

2L4

µ2

Tx

Tavg
(21.12)

The critical Rayleigh number, used to calculate Xc = Ra
1/3
c , is computed as

Rac =
(a2

1 + 15.9)3

a2
1

(21.13)

where
a1 = 0.75a0 (21.14)

and

a0 = 7.66
L

d
(21.15)

The “a” values represent the dimensionless horizontal wave number for the first-
mode convection cell within the tube. The value of a0 is the value recommended

21.2. COMPLIANCE DUCT GAS DOMAINS 217

for vertical cylinders by Edwards and Catton in reference [11]. a1 is a correc-
tion by Hollands in [30] for adiabatic wall boundary conditions. The leading
coefficient in correlation (21.9) differs from the 0.0585 value recommended by
Hollands. It is the result of calibration to free convection measurements by
Swift and Backhaus in reference [66].

In arguing for the form of his correlating expression, Hollands presents an
informative and convincing case, worth repeating. It goes something like this:
For very small L/d we have essentially convection in an infinite horizontal fluid
layer heated from below. In such a geometry the top-heavy fluid layer be-
comes unstable at some critical Rayleigh number at which point convection
cells appear, causing an enhancement to molecular-conduction heat transfer.
As Rayleigh number increases, additional smaller-scale cells appear, further
enhancing heat transfer. Finally, turbulence ensues at high-enough Rayleigh
number. When vertical walls interrupt the horizontal layer, they suppress any
convection cells smaller than the wall spacing, or tube diameter in our case.
Thus the critical Rayleigh number at which the first convection cell occurs
increases with reducing diameter (increasing L/d). Eventually though, at suffi-
ciently high Rayleigh numbers, the conduction enhancement approaches that of
an unobstructed horizontal layer, which is correlated by the Globe and Drop-

kin expression qf/qm = 0.069G
1/3
r P 0.407

r . Hollands correlation captures both
the critical Rayleigh number at which convection first appears and the high-
Rayleigh-number limit.

21.2.3 Boundary Convection

Boundary convection is a sort of shuttle heat transfer produced by the convoluted
near-wall velocity profile of oscillating flow. It is the analog of displacer shut-
tle heat transfer in a conventional stirling machine. At high Valensi numbers,
the convoluted velocity and temperature profiles within the viscous and ther-
mal boundary layer of oscillating flow interact to produce a convective thermal
energy transport beyond that produced by the complex-valued Nusselt number
model in Sage. Reference [13], which applies to laminar incompressible flow be-
tween parallel plates with an axial temperature gradient, shows that the effect
is small so long as Valensi number remains below about 100. However, typical
compliance tubes involve Valensi numbers significantly higher than 100.

Figure 6 of that paper shows a curve A, corresponding to the exact-solution
enthalpy transport, and a curve B, corresponding to that of a solution based
on complex-valued Nusselt number, like that of Sage’s duct-gas model. The
difference between these curves is the boundary convection qb we are looking
for. Taking the high Valensi number limits of the equations for these curves
(equations (65) for Pr = 0.7, σ = ∞) and normalizing by molecular axial
conduction qm gives normalized boundary convection in the form

qb

qm
= 0.159

√

Va(2δ/d)2 (21.16)

where δ is the section-mean flow tidal amplitude and d is hydraulic diameter.

218 CHAPTER 21. COMPLIANCE DUCTS

Although the above results were derived for parallel-plate flow, cast as they
are in terms of hydraulic diameter, they apply to tubes as well as to narrow
channels or annuli. This follows because boundary convection, in the high-
Valensi-number limit, occurs entirely within a thin layer (thickness on the order
d/

√
Va) near the wall. As such, the phenomena is insensitive to the exact shape

of the duct and amounts to a convective energy flow per unit wetted perimeter.
The actual value of this energy flow per unit wetted perimeter could be obtained
by multiplying either previous expression by the molecular conduction per unit
area q = −kTx, then by the ratio of flow area to wetted perimeter d/4. As
expected, in the high-Valensi limit (neglecting the Nu term), the result would
be seen to be independent of d or any other geometrical parameter. Assuming,
in particular, it would be applicable to tubes, we could then convert it back to
the original form by dividing by the area-to-perimeter ratio (d/4, same as for
plates) and then again by q.

There remains the question of what happens in turbulent flow. Evidence
suggest we might then base our boundary convection equation on an effective
Valensi number where molecular viscosity is replaced by turbulent viscosity —
which is generally very much higher. Thus, effective Valensi number is generally
greatly reduced for turbulent flow and qb would not be as large as predicted by
equation (21.16). However, since enhanced axial conduction is likely to prohibit
any reasonable compliance tube from operating in the turbulent flow regime in
the first place, the issue is probably moot. We might as well ignore any turbulent
correction to qb, thereby giving added incentive for flow to remain laminar.

21.2.4 Streaming Convection

Note: This is a revised formulation as of Sage version 11. Compared to earlier
formulations it includes the suppression effects of cold-end-down orientation and
high frequency oscillatory flow.

Streaming convection is produced by a second-order steady flow circulation
within the tube interior, superimposed on the main oscillating-flow velocity field.
It has no counterpart in displacer-type stirling machines. In the high Valensi-
number limit (viscous and thermal boundary layer thicknesses small compared
to tube diameter) the second-order terms of an oscillating velocity field produce
an effective wall-velocity, often called Rayleigh streaming, replacing the usual
no slip condition. This effective wall velocity uw may be calculated using the
formulation below derived by Olson and Swift [46]. Note: prior to Sage version
7 the formulation omitted some of the smaller terms — effectively assuming
C1 = C2 = 3/4, C3 = 0.

uw =
|P − P0||u|

γP0
[C1 cos θ +C2 sin θ] +

|u|2
ω

[
3

4

dA/dx

A
+ C3

dTm/dx

Tm

]

(21.17)

where

C1 =
3

4
+

(γ − 1)(1 − eP 2
r)

2Pr(1 + Pr)

21.2. COMPLIANCE DUCT GAS DOMAINS 219

C2 =
3

4
+

(γ − 1)(1 − e)
√
Pr

2(1 + Pr)

C3 =
(1 − e)(1 −√

Pr)

4(1 + Pr)(1 +
√
Pr)

|P − P0| is the pressure-fluctuation amplitude, P0 is time-mean pressure, |u| is
the section-mean velocity amplitude, θ is the phase angle between them (velocity
phase minus pressure phase) and A is the flow area. γ is the ratio of specific
heats, Pr the Prandtl number and e represents the temperature dependence of
viscosity, assumed to be of the form

µ(T) = µ(T0)

(
T

T0

)e

(21.18)

Sage calculates the e exponent at each point of evaluation based on the viscosity
variation around Tm using a central finite differencing of the Sage gas-state
viscosity function µ(T)

e =
Tm

µ(Tm)

dµ

dT
≈ µ(Tm + εTm) − µ(Tm − εTm)

2εµ(Tm)

The time-average fluid flow in the central part of the compliance tube
(away from the wall boundary layer) must satisfy the uw boundary condition
while maintaining zero section-mean flow. Prior to v11 the Sage streaming loss
formulation assumed that uw produced a zero-shifted parabolic velocity profile
in the tube interior. As of v11 this has been revised to reflect the buoyant stabi-
lization forces of cold-end-down orientation and oscillatory mean flow that tend
to overwhelm this parabolic velocity profile by aligning density gradients along
the direction of gravity and vibration, respectively. The result is a relatively
narrow convection cell near the wall, consisting of two streams flowing in op-
posite directions carrying fluid from regions of different temperature. The heat
exchange between the two streams results in a transverse temperature profile,
which multiplied by the velocity profile produces a net (section-average) thermal
streaming convection.

The account here is a summary of the streaming convection formulation
derived in Gedeon memorandum [25], which includes a comparison to published
data for tapered pulse tubes.

Effective Reynolds number For correlating the streaming convection loss
the dimensionless group of interest is a Reynolds number based on effective wall
streaming velocity and a characteristic dimension b defined as the distance from
the wall to the point where the interior streaming velocity us is zero — the
thickness of the near-wall leg of the convection cell.

Reb =
ρ|uw|b
µ

(21.19)

220 CHAPTER 21. COMPLIANCE DUCTS

Reference [25] derives the value of b by assuming a cubic form for the interior
flow velocity profile us then solving for the parameter b by balancing the vis-
cous pressure gradient driven by streaming at the wall against the stabilizing
pressure gradients of buoyancy and the oscillatory mean flow. The result is this
approximation for the characteristic convection cell thickness.

b ≈ fc

[

2.8
(µ/ρ)2L

Pr
∆T
T

(
2g cos θ∗ + a2ω2

L
∆T
T

)

]1/4

(21.20)

where fc is a calibration coefficient, µ is fluid viscosity, ρ is fluid density, T is
fluid temperature, ∆T is the end-to-end temperature difference, g cos θ∗ is the
effective gravitational acceleration in the tube direction (see equation (21.4)),
aω is the mean-flow velocity amplitude and L is the tube length. According to
[25], the value fc = 2.1 fits available data.

The streaming convection loss is based on a formulation qs0 valid at low
streaming velocities and a formulation qs∞ valid at high streaming velocities.
The low-streaming-velocity relative streaming convection is

qs0

qm
≈ 1.02 (RebPr)

2 b

d
(21.21)

The high-streaming-velocity limit is

qs∞

qm
≈ 1.69RebPr

L

d
(21.22)

The streaming convection at any streaming velocity is calculated as a linear
combination of the low and high streaming velocity limits of the form

qs = (1 −W)qs0 +Wqs∞ (21.23)

Where W is a weight function defined in terms of the critical Reb value at which
qs∞ = qs0. W smoothly transitions from the value 0 for Reb less than 0.8 of
the critical value to 1 for Reb greater than the critical value. This avoids a
corner at the critical value in the streaming loss as a function of Reb in order
to avoid numerical solution stability problems. Equating the right-hand sides
of equations (21.21) and (21.22) and solving for RebPr gives the critical Reb as
the value that satisfies the equation

RebPr = 1.66
L

b
(21.24)

The above correlations are derived in Gedeon memorandum [25] by solving
a laminar gas energy equation.

ρusTx =
k

cp

∂2Td

∂y2
(21.25)

21.2. COMPLIANCE DUCT GAS DOMAINS 221

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

distance from wall (just outside oscillatory boundary layer) y/b

Stabilized Rayleigh Streaming Velocity and Temperature Profiles

nondimensional

temperature

Td

nondimensional

streaming velocity

(us / uw)

return

stream

near-wall

stream

Figure 21.1: Streaming velocity us and temperature solution Td extending a
distance 4b from the wall. The near-wall stream drives the temperature one
way and the return stream drives it the other way. Radial thermal diffusion
tends to equalize the temperature.

which ignores the term ρvs
∂Td

∂y on the left side associated with the energy trans-
port produced by the transverse component of the flow velocity. This equation
assumes a coordinate frame moving along with the section-mean flow where Td

represents the dissipative part of the stationary temperature solution in that ref-
erence frame. us is the time-average streaming velocity in the tube interior. Tx

is the axial temperature gradient, assumed constant. The streaming velocity us

drives the Td solution. It switches sign from the near-wall to return streams and
tends to increase the magnitude of the convection cell temperature difference
∆Td in proportion to the streaming velocity. The streaming loss is the section
average (denoted by 〈·〉 brackets) of the streaming enthalpy flow, denoted here
with zero subscript

qs0 = cp〈ρusTd〉 (21.26)

Figure 21.1 shows the nondimensional streaming velocity us and dissipative
temperature Td near the wall.

Pulse-Tube Escape Velocity and the Importance of Flow
Straightening

Wall streaming is not the only source of forced convection in compliance tubes.
A useful quantity to keep in mind is the velocity for an upward directed fluid
jet starting at the cold bottom of a pulse tube to have enough kinetic energy

222 CHAPTER 21. COMPLIANCE DUCTS

to make it to the warm top — the jet escape velocity. Such jets can arise from
the relatively high fluid velocities in ducts or manifolds at the ends of the pulse
tube or flow separations at the tube entrance if suitable care is not taken to
design flow straighteners at the ends of the pulse tube (usually layers of woven
wire mesh) or manifolds with very low fluid velocities.

Ignoring the stabilizing effects of the oscillatory mean flow and considering
only buoyant stabilization of cold-end-down orientation, the cold jet escape
velocity is in terms of gravitational field g and tube height L (length) is

uc =
√

(1 − ρh/ρc)gL (21.27)

where ρh and ρc are the fluid densities at the warm and cold ends. This is easy
to derive by equating the kinetic energy per unit volume of the cold-end jet
ρcu

2
c/2 with the potential energy change moving through the surrounding fluid

∫ L

0 (ρc − ρ)gdx = (ρc − ρ)gL/2 (assuming a linear density variation between ρc

and ρh) then solving for uc. Using the ideal gas relationship ρ = P/(RT), the
cold jet escape velocity may be written

uc =
√

(1 − Tc/Th)gL (21.28)

Arguing similarly the escape velocity for a warm jet starting at the top to reach
the bottom is

uh =
√

(Th/Tc − 1)gL (21.29)

A cold jet that makes it to the warm end also displaces warm fluid to the cold
end (neglecting heat transfer with the surrounding fluid), resulting in a round-
trip enthalpy flux that may be quite significant compared to wall streaming
convection.

21.3 Numerical Diffusion

Properly modeling, of even an ideal compliance tube, requires quite a few control
volumes (NCell) to reduce numerical truncation errors to an acceptable level —
typically about 7 or 8 in Sage. The problem is that the temperature field is
mostly carried with the flow (rather than fixed to the matrix as in the case
of a regenerator) which is a non-optimal state of affairs for the spatially fixed
(Eulerian) solution framework of Sage.

The problem grows with increasing flow amplitude so that the error in pre-
dicted net enthalpy flux generally becomes quite significant when the tidal am-
plitude of the mean flow is more than about 25% of the duct length, or whenever
the flow amplitude is high enough that a fluid particle at the inlet at the time
of flow reversal travels more than about half way down the duct. The error
tends to reduce the net refrigeration power, much as an increased gas thermal
diffusion would, hence the name numerical diffusion.

Experience suggests that numerical diffusion is something to keep in mind
but not worry about too much. It is generally not a problem during optimiza-
tions because there is usually no compelling reason for the optimizer to drive a

21.3. NUMERICAL DIFFUSION 223

NCell = 6 NCell = 8 NCell = 10 NCell = 12
δ/L NTnode = 6 NTnode = 8 NTnode = 10 NTnode = 12
0.1 0.0009 0.005 0.0004 0.0003
0.2 0.0061 0.0046 0.0036 0.0027
0.3 0.0184 0.0156 0.0127 0.0103
0.4 0.0387 0.0360 0.0315 0.0272

Table 21.1: Numerical diffusion error h/h0 for different values of tidal amplitude
ratio δ/L and grid cell numbers.

compliance duct into the region of significant numerical diffusion. So, the error
tends to be self limiting. The main problem is reduced simulation accuracy
when validating experimental data at large compliance-duct tidal amplitudes.

21.3.1 Quantitative Estimates

The actual amount of numerical diffusion can be measured by comparing Sage
simulated results against an exact analytic solution for which enthalpy transport
is zero. Such a solution is that of an ideal adiabatic compliance tube filled
with non-axially-conductive gas moving back and forth with uniform sinusoidal
velocity, as would be produced by two parallel-moving pistons within cylinder
spaces attached to either end. If the piston cylinders are each held at different
temperatures (say by means of two heat exchangers positioned between them
and the compliance tube) then an equilibrium temperature profile will establish
itself within the compliance tube. Provided the tidal amplitude remains low
enough, this temperature profile will consist of two isothermal legs from either
inlet up to the maximum penetration depth (of a fluid particle that was at
the inlet at the time of last flow reversal) with a continuous linear variation in
between. The linear variation is not strictly-speaking necessary but it is one
valid solution. This temperature profile will merely slosh back and forth with
the mean flow, the net enthalpy flow down the tube will be zero and there will
be no pressure variation. This happy state of affairs continues until the tidal
amplitude increases to the point where gas from one end reaches the other. At
this point warm gas is suddenly cooled, or vice-versa, with the result that net
enthalpy transport is no longer zero.

When modeled by Sage, the idealized compliance-tube produces a net en-
thalpy transport h as given by table 21.1. The results are normalized by the
worst-case enthalpy transport h0 that would occur in the case of zero tube length

h0 =
cp
π
ṁ1(Th − Tc)

where ṁ1 is the average mass flow rate amplitude (it varies with temperature)
and (Th − Tc) is the temperature difference. Theoretically h/h0 should be zero
up to the point where the tidal amplitude ratio δ/L reaches 1/2.

The results shown that h/h0 grows quickly as tidal amplitude ratio ap-
proaches the critical value of 1/2. This is to be expected since the finite-

224 CHAPTER 21. COMPLIANCE DUCTS

difference solution for the pulse-tube tends to round out the corners of a temper-
ature profile that is theoretically approaching a step function as tidal amplitude
ratio approaches 1/2. But below a tidal amplitude ratio of about 0.25, erroneous
enthalpy transport h/h0 is less than 0.01.

21.3.2 Interpretation in terms of Refrigeration Power

So how significant is an erroneous enthalpy transport of h/h0 = 0.01? This is
hard to say since worst-case enthalpy transport h0 is not something we usually
think about. Instead we usually think about the ideal refrigeration power of a
pulse tube which is

hpv =
1

2
P1V̇1

assuming pressure amplitude P1 and volumetric flow rate amplitude V̇1 are in
phase. But if we substitute ṁ1/ρ0 for V̇1, then 2P0/(R(Th +Tc)) for ρ0, we can
formulate the ratio of ideal refrigeration power to worst-case enthalpy transport
as

hpv

h0
=
π

4
(1 − 1/γ)

P1

P0

(Th + Tc)

(Th − Tc)

So, for example, in a helium pulse tube with (1 − 1/γ) = 0.4, pressure ratio
P1/P0 = 0.15 (somewhat on the high side), Th = 300 and Tc = 75, we have
hpv/h0 = 0.079. Therefore, an erroneous enthalpy transport of h/h0 = 0.01
corresponds to 0.01/0.079 = 0.13 of ideal refrigeration power — a significant
amount. But the error quickly drops off as tidal amplitudes decreases. So, for
tidal amplitude ratios on the order of 0.10, the error would only be of the order
1% of ideal refrigeration power.

Chapter 22

Flow Restrictors

Flow restrictors are composite geometry and gas-domain components that model
zero-volume adiabatic flows. They were originally intended for modeling the orifi
found in pulse-tube coolers but have evolved over time to represent all sorts of
components that embody a relationship between mass flow rate and pressure
drop, like pumps, compressors, and so forth. They are found in the toolbox of
the root-level model component and are born with gas flow connectors at either
x end intended for connection to gas domain model components. While you
could also model flow restrictors using a more complicated heat exchanger com-
ponents, the use of flow restrictors is easier and faster. Keep in mind, though,
that flow restrictors are not appropriate where the volume of the component is
significant or where there might be a significant amount of heat transfer to or
from the gas. Variables common to all flow restrictors are:

Aflow : (real, m2) mean-flow cross sectional area A.

Pwet : (real, m) Wetted perimeter w.

Fmult : (real, dimensionless) Empirical multiplier for viscous pressure drop.

Tinit : (real, K) Initial temperature. Used only for initializing or re-initializing
solution variables ρ and ρe. As such, its value does not affect the final
converged solution, but it may affect whether the solution converges at
all. It should be set to a value consistent with the initial temperatures of
adjacent components.

AEfric : (real, W) Available energy loss to viscous flow friction.

FT : (Fourier series, K) Gas temperature T .

FP : (Fourier series, Pa) Gas pressure P .

FDP : (Fourier series, Pa) Pressure difference across restrictor (positive − neg-
ative ends).

225

226 CHAPTER 22. FLOW RESTRICTORS

FH : (Fourier series, W) Stagnation enthalpy flow uA(ρe + P).

FRhoUA : (Fourier series, kg/s) Mass flow rate ρuA.

MachMean : (real, dimensionless) Time-averaged Mach number. Keep an eye
on this. If it gets near unity Sage may not converge.

ReMean : (real, dimensionless) Time-average Reynolds number Re.

When needed, flow restrictors calculate hydraulic diameter in terms of flow area
A and wetted perimeter w as

dh = 4A/w (22.1)

and Reynolds number as

Re =
|ρu|dh

µ
(22.2)

Flow restrictors calculate gasdynamic variables at each end with the same flow
area A. So the product of density and velocity ρu is proportional to mass
flow rate and is the same at either end of the flow restrictor. Flow is assumed
isenthalpic which means that the temperature T is also the same, at least to the
extent the gas state is ideal. But density may differ at the two ends, especially
if the pressure drop across the flow restrictor is large. It is important to keep
this in mind in formulating the pressure drop across the flow restrictor.

22.1 Sintered Powder Plug

TSphRstr

The sintered powder plug adds input variables:

Length : (real, m) Flow length L.

Dcan : (real, m) Diameter Dc of plug or internal diameter of canister holding
plug.

Dsphere : (real, m) Powder sphere or particle diameter ds.

Porosity : (real, m) Plug porosity β (void volume / total volume).

It calculates flow area as

A = β
π

4
D2

c (22.3)

and wetted perimeter as

w = 6(1 − β)
π

4
D2

c/ds (22.4)

presuming spherical particles. It calculates Darcy friction factor using the same
correlation as for the stirling-class packed-sphere matrix heat exchanger geom-
etry, namely:

f = (79/Re+ 1.1)β−0.6 (22.5)

22.2. SHARP-EDGED ORIFICE 227

and computes viscous pressure drop as

∆P = −1

2
f
L

dh
ρmu|u| = −1

2
f
L

dh
(ρu)|ρu|/ρm (22.6)

Density ρm is the average of density at the two ends but calculating it is a
bit convoluted because the solution formulation maintains only the downstream
value, denoted by ρ, without a subscript. For purpose of pressure drop calcu-
lations then, Sage calculates mean density from the average density of the gas
domains on either side of the flow restrictor.

Prior to Sage version 13 (October 2024) ρm was formulated in terms of
the flow-restrictor downstream temperature T , the average pressure Pm of the
gas domains connected on either side, and the gas equation of state ρ(T, Pm),
which was potentially unreliable for fluids in the two-phase region, where pres-
sure is constant and specific volume indeterminate. The present method is more
reliable and produces essentially the same result.

22.2 Sharp-Edged Orifice

TOrfRstr

The sharp-edged orifice adds input variables:

Dorf : (real, m) Diameter Do of orifice.

Cd : (real, dimensionless) Discharge coefficient Cd.

Areduc : (real, dimensionless) Ratio Ao/Ah of orifice area Ao to housing area
Ah. Must be > 0 and should be < 1.0. Affects the orifice pressure drop
(see below) and also the Bernoulli pressure change between the ends of
the flow restrictor and adjoining gas domains, which see gas entering or
leaving the flow restrictor at the velocity in the housing rather than in the
orifice itself.

A sharp-edged orifice is defined primarily by the orifice diameter but also by
the housing duct in which it is contained. To avoid trouble with high velocities
in the flow-restrictor gas kinetic energy term the mean flow area A is taken to
be the housing area Ah (upstream and downstream flow area), calculated from
inputs Do and (Ao/Ah) as.

Ah =
π

4
D2

o/(Ao/Ah) (22.7)

The cross-section area of the orifice itself is calculated as

Ao = Ah(Ao/Ah) (22.8)

According to the conventional formulation for positive-directed flow through a
sharp-edged orifice, the mass flow rate ṁ is governed by

ṁ = −CdAo

√

ρe∆P

(1 − Ao/Ah)2
(22.9)

228 CHAPTER 22. FLOW RESTRICTORS

where Cd is the discharge coefficient and ρe is a representative density, which
Sage takes as the downstream density provided pressure drop does not get too
large (see below). Solving for ∆P , the explicit equation for pressure-drop in a
sharp-edged orifice is

∆P = − 2

C2
d

(1 − Ao/Ah)
2 ṁ|ṁ|

2ρeA2
o

(22.10)

The final factor on the right is the velocity head 1
2ρeuo|uo| reckoned at the orifice

velocity uo = ṁ/(ρeAo). Discharge coefficient Cd accounts for the actual orifice
velocity being somewhat higher than uo due to the flow stream in the orifice
being somewhat contracted below Ao. According to Idelchik ([32], p. 90), Cd

ranges from about 0.84 for a thin sharp-edged orifice to 1.14 for a drilled hole
in a thick plate (L/d ≥ 2, sharp edged).

22.2.1 Low-Reynolds Linearization

In the Sage formulation a term 50/Re is added to the factor (2/C2
d)(1−Af /Ah)2

in equation (22.10) to improve solution stability when starting from zero-velocity
initial values. The added term is reminiscent of the Darcy-flow part of the Ergun
friction factor for porous materials. It is significant only for small Re and serves
to linearize ∆P as a function of ρu. For purposes of calculating Reynolds number
the wetted perimeter is taken to be that of the housing, calculated as

w = πDo/
√

Ao/Ah (22.11)

22.2.2 Choked Flow

Equation (22.10) is fine for relatively low pressure drops. But when downstream
pressure P drops to about half the upstream pressure Pu the velocity in the ori-
fice reaches the speed of sound and a further reduction in downstream pressure
has no affect on the flow through the orifice. The flow is said to be choked at
that point. The critical downstream pressure Pc at which this happens is given
by Schmidt ([56], p. 337), for the case of frictionless ideal-gas flow as

Pc = Pu

(
2

γ + 1

)γ/(γ−1)

(22.12)

where γ is the ratio of specific heats. For all gases the factor on the right is near
0.5 so Sage simply takes Pc as half the upstream pressure. For the case of choked
flow (i.e. downstream pressure Pd < Pc) Sage calculates the pressure drop from
equation (22.10) evaluated at effective density ρe equal to the choke density ρc

and adds to it the choked pressure drop ±(Pc − Pd), where the positive sign
applies to negative directed flow and vice-versa. Sage estimates choked density
ρc from the ideal-gas relationship

ρc = Pc/(RT) (22.13)

22.3. ASYMMETRIC SHARP-EDGED ORIFICE 229

Essentially, equation (22.10) takes care of the expansion loss as the jet at the
orifice throat dissipates in the downstream housing and (Pc − P) takes care
of any additional pressure drop beyond the choke point. Estimating choked
values Pc and ρc from ideal adiabatic relationships is not strictly correct but
this component does not aim for perfection. The goal is only to approximate
the physics of choked flow, where mass flow rate increases only in proportion to
ρc under choked conditions. That is clear from equation(22.9), substituting ρc

for ρe, and noting that ∆P is proportional to Pc for choked flow, which is also
proportional to ρc.

Prior to Sage version 13 (October 2024) ρc was calculated from the
general equation of state as ρ(Pc, T), which was potentially unreliable for non-
ideal fluids in the two-phase region, where pressure is constant and density
indeterminate.

22.3 Asymmetric Sharp-Edged Orifice

TAsyOrfRstr

The asymmetric sharp-edged orifice is a variation of a sharp-edged orifice with
a pressure recovery diffuser in one direction or the other defined by new input
variable:

Recov : (real, dimensionless) Recovery area ratio R.

You might, for example, use such an orifice in a model having a closed flow loop
where you need a way to cancel unwanted DC (time averaged) flow circulation.
You would do this by optimizing Recov subject to a constraint like FRhoUA.mean
= 0.

Asymmetric flow is implemented in terms of two areas A+ and A−, the
former being the effective orifice flow area for positive flow and the later the
effective area for negative flow. The two areas are related by the formula

A+ − A−

Amin
= R (22.14)

where R is the recovery area ratio and Amin, the smaller of the two areas,
is the orifice flow area inherited from the parent object. In other words, for
R = 0 there is no recovery and flow is that of the parent sharp-edged orifice.
For R > 0 there is a recovery channel in the positive direction with exit area
A+ = (1 + R)Amin. And for R < 0 there is a recovery channel in the negative
direction with exit area A− = (1 − R)Amin. The succinct way to say all this is
that the orifice flow area Ao is always given by

Ao =

{
(1 + max(R, 0))Amin if u > 0
(1 − min(R, 0))Amin otherwise

(22.15)

At the root of the DC flow phenomenon are ill-phased density and velocity
fluctuations in the gas which tend to produce DC pressure gradients. The issue

230 CHAPTER 22. FLOW RESTRICTORS

is whether or not DC pressure gradients produced by various flow resistances in
the closed loop completely cancel each other. If they do not, then DC flow is the
consequence. Enthalpy flow in components like the regenerator and compliance
tube can be extremely sensitive to DC flow. So, one symptom of DC flow is
extreme sensitivity of heat lift to small changes in input variables or grid node
counts.

22.4 Check Valve

TCheckRstr

The check valve is a variation of a sharp-edged orifice that behaves like an orifice
in one direction but essentially blocks flow in the other direction. New input
variables are:

Aratio : (real, dimensionless) Ratio of fully-closed to fully-open flow area R.
Generally a positive number � 1.0. A value of 1.0E–2 is a reasonable
value. Backflow leakage increases as Aratio increases and decreases as
Aratio decreases. But too small a value may cause convergence problems.
The fully open area is the orifice area πD2

o/4, where Do is the inherited
Dorf input.

Popen : (real, Pa) Pressure difference ∆Pc required to open the valve. A pos-
itive value means positive flow opens the valve. A negative value means
negative flow opens the valve. At pressures above ∆Pc (or below if neg-
ative) flow resistance changes smoothly to the fully-open value at twice
∆Pc. A zero value means the valve is always open.

Instead of modulating flow by changing the actual flow area, like the asym-
metric orifice, a check valve simply adjusts the flow friction to have the same
effect. This avoids instabilities due to high gas flow velocities when the area
suddenly goes from large to small. In the open position, check valves calculate
pressure drop as the orifice pressure drop from equation (22.10), for the full
open area πD2

o/4. In the closed position, pressure drop is the full-open orifice
pressure drop increased by a factor 1/R2, where R is the closed-to-open area
ratio. So even though actual flow area does not change, the effect on pressure
drop is the same as if it had.

Check valves decide whether they are fully closed, fully open or somewhere in
between, based on the current pressure drop ∆P compared to the valve opening
pressure ∆Pc. The valve starts to open at ∆Pc and is fully open at 2∆Pc. No
valve inertia is modeled. In mathematical terms, Sage calculates the valve open
fraction as

W =
∆P

∆Pc
− 1 (22.16)

which ranges linearly from 0 at ∆P = ∆Pc to 1 at ∆P = 2∆Pc. The valve flow
restriction is then calculated as

Ar =

R if W < 0
1 if W > 1
smooth transition otherwise

(22.17)

22.5. TIME-DEPENDENT VALVE 231

Finally, the valve pressure drop compared to the full-open pressure drop ∆Po is

∆P =
∆Po

A2
r

(22.18)

There is a bit of circularity in the above calculations because ∆P depends on W
which depends on ∆P . Sage circumvents this difficulty by calculating W with
an implicit state variable Fpd substituting for ∆P . After solution convergence
Fpd = ∆P .

So why can’t a check valve seal perfectly in the back direction? The reason
has to do with solution convergence. If the seal was perfect the pressure drop
across the valve would be indeterminate for the closed part of the cycle leading
to convergence difficulty, especially when solving from initialized values. Even
with a flow restriction of R = 1.0E–2 convergence can be problematic. It may
be helpful to start with R = 1.0E–1 or larger in order to achieve convergence,
then reduce R gradually.

22.5 Time-Dependent Valve

TValveRstr

The time-dependent valve is a variation of a sharp-edged orifice that behaves
as if the inherited flow area (that given by input Dorf) is reduced (or increased)
by a time-varying multiplier factor

F (t) = max(R(t), Rmin) (22.19)

The time-varying factor R(t) comes from the Fourier-series input variable FRe-
strict and the minimum allowed value Rmin from the real input MinRestrict,
which must always be positive. A time-dependent valve is intended for model-
ing such things as the pressurization valve in a Gifford-McMahon cooler. New
input variables are:

FRestrict : (Fourier series, dimensionless) Flow area multiplier R(t) above.
Keep in mind that valves that open or close abruptly are difficult to re-
solve in the coarse computational grid employed by Sage. Better to model
a more smoothly varying equivalent valve, if possible. Either that or in-
crease the number of time nodes in the computational grid (input variable
NTnode). For more information on how you might specify FRestrict to
accomplish your objectives, see the section on Fourier Series in chapter 8.

MinRestrict : (real, dimensionless) Minimum flow area multiplier Rmin above.
Generally a positive number � 1.0. A value of 1.0E–2 is reasonable. Too
small a value may cause convergence problems.

Like a check valve, this object does not change the actual flow area, but only
adjusts the pressure drop to have the same effect, by calculating it as

∆P = ∆P0/F (t)2 (22.20)

where ∆P0 is the pressure drop calculated from orifice equation (22.10) as a
function of current mass flow rate, at inherited flow area. This prevents insta-
bilities due to high gas flow velocities when the area is small.

232 CHAPTER 22. FLOW RESTRICTORS

22.6 DC Flow Blocking Restrictors

TSphMembr

TOrfMembr

Another way to cancel DC flow is to use one of these flow-restrictor variations,
which descend from the sintered powder plug or the sharp-edged orifice com-
ponents, respectively. They automatically block DC flow by imposing on top
of the pressure drop inherited from the parent component an implicitly-solved
DC pressure-drop sufficient to exactly cancel any DC mass flow rate. This DC
flow blocking behavior is built into the model solution and does not require an
optimization constraint to solve, as in the case of the asymmetric sharp-edged
orifice. The amount of DC pressure-drop required appears as output variable
DPstdy.

In some cases you may want to regulate the DC flow to some desired set-
point rather than canceling it entirely. You can do this by changing the value of
input variable DCRhoUA from its default value of zero to the desired set-point.

The additional variables for this component are:

DCRhoUA : (real, Kg/s) set-point for DC (time-average) mass flow rate.

DPstdy : (real, Pa) pressure drop required to achieve the DC mass flow rate
set-point.

Variable DPstdy is not the same as the time-mean value of the pressure-drop
Fourier series FDP because FDP includes the pressure drop of the ancestor com-
ponent, which may have its own DC component for reasons outlined above.

While very convenient from a modeling point of view, these components
suffer from the disadvantage that they do not specify the mechanism by which
DPstdy is to be generated. This is partly a good thing, because the value of
DPstdy is subject to considerable numerical error. Changing the number of time
or spatial nodes in the computational grid, or even the time-grid orientation with
respect to the solution (by changing compressor piston phase), can dramatically
affect DPstdy. This is because the time-average pressure drop is the residual of
some much larger time-varying pressure drops.

Orifice designers, then, have two choices. Either they ignore DPstdy, hoping
that the any DC flow effect will be too small to matter, or they deal with it.
Dealing with it might involve designing-in some sort of mechanism to produce
the a DC pressure drop bias of the predicted magnitude (allowing time in the
test cell to calibrate it). Or it might involve eliminating DC flow by some other
means — by means of an impermeable membrane, for example. In fact, it is
useful to think of these components as impermeable membranes in series with
an orifice.

Another disadvantage of these components is that they must only be used
in situations where DC flow is possible (closed loop flow paths, not otherwise
DC-flow restricted) lest a solver singularity result. In other words, if DC flow
is already implied to be zero, then any DC pressure-drop imposed by these
components will have no affect — and may result in a singular solution. This
fact places an added burden on the model designer to recognize when DC flow
is a problem and to correct it, but not over-correct it. For example, placing two
DC-flow canceling components in series, is taboo.

22.7. MASS-FLOW PUMP 233

22.7 Mass-Flow Pump

TPump

The universe of modeling options admits to another possibility — one where
DC flow is desirable. To model an open thermodynamic cycle, for example. Or
to investigate the effect of a prescribed amount of DC flow. This component
allows you to model a mass-flow pump by recasting the mass-flow-rate Fourier
series FRhoUA as an independent input variable rather than an output. What
happens is the pressure drop across the component is solved implicitly in order
to make the mass flow rate come out right. You can see what this pressure drop
is by inspecting output variable FDP.

You can specify the mass flow rate to be anything you desire — including
sinusoidal terms and higher harmonics. This means you can model much more
than merely a DC flow generator. You can model the perfect flow restrictor.
One that gives any desired mass flow and phasing without regard to the physical
means for achieving it. And the subfields of the mass flow rate can be optimized
or referenced in constraints, as discussed under the topic of Fourier-series vari-
ables in chapter 8. One warning though: If you specify a nonzero DC part of
the mass flow rate, the mass-flow pump should be located within a closed loop
capable of supporting DC flow, otherwise the mean pressure drop will be inde-
terminate and the solution will not converge — if DC flow is impossible, then
there is no amount of pressure drop that will force the required value.

The flow area Aflow is another input. It is present in order to define flow
velocity in the pump, but normally its value does not matter much. However,
it should be large enough that the mean Mach number (output MachMean) is
substantially below one.

When starting from initial values or a re-initialized solution, a mass flow
pump in your model can slow down convergence, depending on the magnitude of
the flow specified. The DC component of FRhouUA seems especially troublesome
in this regard. If this is a problem, try starting with a small mass flow rate
initially and increase it gradually over the course of several solutions.

22.8 Mass-Flow Driver

TDriver

This is a phasor version of the previous mass-flow pump. It specifies mass
flow rate as a phasor input variable, having sinusoidal time variation. You can
optimize the subfields of the mass flow rate, or reference them in constraints, as
discussed under the topics of Complex and Phasor variables in chapter 8.

Why would you want to use a mass-flow driver since you can specify all of
the Fourier-series components, not just the sinusoidal part, with the previous
mass-flow pump? Because this component allows the DC part and all higher
harmonics to pass unobstructed. So there is no requirement that it be placed
in a closed flow loop, as is the case with the mass-flow pump. Mass-flow drivers
are perfectly happy as components in either closed or dead-ended flow loops.
The DC flow component cannot be over-constrained. You can even connect
mass-flow drivers at both ends of a duct, for example, to achieve a desired

234 CHAPTER 22. FLOW RESTRICTORS

pressurization within the duct, provided the physics is reasonable.

The way the mass-flow driver works is by defining the desired mass flow
rate as an independent phasor input variable PhsrRhoUA and implicitly solving
for the phasor pressure drop that will bring this about. The phasor pressure
drop is actually implemented as two implicit real variables corresponding to the
real and imaginary parts. Although these variables are invisible, they give their
values to the solution grid and you can monitor them in the first harmonic of
output variable FDP.

As with the mass-flow pump, the flow area Aflow does not affect the pressure
drop but it does affect the gas velocity. So it should be large enough that the
mean Mach number (output MachMean) is substantially below one.

22.9 Flow Restrictor Theory

To be connection-compatible with the gas-domains of the stirling model class
requires two things: flow restrictors must maintain a time-ring that includes
state variables P, u, ρ, ρe for export to flow connectors. And they must import
mass flow rate ρuA and upwind mass-specific enthalpy h from flow connectors
for use in their own internal solution. ρuA must be taken as the boundary mass
flow rate, at all times, and H as incoming energy, only when flow is into the
restrictor domain. Other state variables may be included for convenience.

The solution grid for flow restrictors is a single time ring containing state
variables A, ρ, ρuA, ρe, u, T, P . These are in the same order and have the same
meanings as in the stirling-class gas domains, except there are a few omissions
for state variables no longer required. Generally, the variables in the grid are
understood as downwind values, except for ρe and P which are separated into
negative- and positive-boundary values to allow for an entropy-generating pres-
sure drop. Aside from that, the variables are designed to maintain mass and
energy continuity across the flow restriction. Neither space nor time differencing
is required anywhere. Exact meaning and method of calculation for all variables
are explained in detail below.

A

Flow area A is computed explicitly from geometrical inputs appropriate to the
specific type of flow restrictor. The reason for including it as a state variable
is so time-dependent flow areas may be specified, as is convenient in the imple-
mentation of the time-dependent valve component.

ρ

Mass density ρ is computed implicitly from the zero-volume mass-continuity
equation

(ρuA)+ − (ρuA)− = 0 (22.21)

22.9. FLOW RESTRICTOR THEORY 235

where (ρuA)+ and (ρuA)− are the values imported from the positive and nega-
tive flow connectors. This forces mass flow rate in the adjoining flow connectors
to be equal. Implicit functions used for solving ρe also help to determine ρ. The
usage in these other implicit functions is consistent with ρ being the downwind
value.

ρuA

Mass flow rate ρuA is computed explicitly as the average of the values in the
adjoining flow connectors:

ρuA =
1

2
[(ρuA)+ + (ρuA)−] (22.22)

This fulfills the requirement that the flow restrictor use imported (ρuA)’s in its
interior solution.

ρe

Downwind energy density ρe is computed implicitly by solving the energy con-
tinuity equation written in the form

ρe+ P

ρ
= hi (22.23)

where ρe and P on the left are downwind state variables while hi on the right
is the mass-specific enthalpy evaluated using variables imported from the com-
ponent across the flow connection in the upstream direction. For an ideal gas h
reduces to cpT in the zero-velocity limit where kinetic energy may be neglected.

For numerical reasons it is convenient to separate ρe into two variables ρe−
and ρe+, thought of as lying at the negative and positive boundaries of the
flow restrictor. The downwind value is ρe+ when flow is positive and ρe−
when flow is negative. ρe− is exported to the negative flow connector and ρe+
to the positive flow connector. The reason this makes sense is because the
implicit function determining either can be formulated without a discontinuity
at flow reversal, as would otherwise be the case. That is, the equation for
determining ρe− is always that local mass-specific enthalpy ρe

−
+P

−

ρ
equals the

value imported across the positive flow boundary, which is valid when flow is
in the negative direction and does no harm otherwise. A similar but opposite
equation determines ρe+. The meaning of P− and P+ is similar to the meaning
of ρe− and ρe+, and is explained further below.

It might be tempting to use these continuity conditions instead to calculate
ρe− and ρe+ explicitly. This will not work because of a circular reference when
accessing P , which itself depends on ρe.

236 CHAPTER 22. FLOW RESTRICTORS

u

Velocity u is computed explicitly in terms of other state variables as

u =
(ρuA)

ρA
(22.24)

The parenthesis in the numerator indicate that (ρuA) is a single state variable.
Since ρ is understood to be a downwind value so u is a downwind value.

T

Temperature T is computed explicitly in terms of other state variables from the
equation of state function

T = T (ρ, ρe, u) (22.25)

The value of ρe is taken as ρe− for negative directed flow and ρe+ for positive
directed flow. In other words, the downwind value. Since ρ and u are also
downwind values the value of T is a downwind value.

P

Pressure P is a bit tricky. The first thought that comes to mind is to calculate
it explicitly in terms of other state variables according to the equation of state.
But then how would pressure drop be imposed on the solution?

The answer is to break down pressure into two components P− and P+,
similar to the treatment for ρe. P− is exported to the negative flow connector
and P+ to the positive flow connector. The idea is to calculate them explicitly,
in terms of the thermodynamic pressure, calculated from the equation of state
P (ρ, T), plus or minus the pressure drop. For the case of P− the equation of state
is valid for the negative flow direction because of the downwind interpretation
already given to ρ and T . For the positive flow direction P (ρ, T) may be offset
by the required pressure drop to produce the correct pressure. If this is also done
similarly but oppositely for P+ then the components across the flow connectors
at either end see the correct pressure drop at all times. This can be written
mathematically as:

P− =

{
P (ρ, T) if ρuA ≤ 0
P (ρ, T) − ∆P otherwise

(22.26)

and

P+ =

{
P (ρ, T) if ρuA > 0
P (ρ, T) + ∆P otherwise

(22.27)

Note that P+ − P− is always the pressure drop ∆P .

22.10. ADIABATIC COMPRESSOR 237

22.10 Adiabatic Compressor

TCompressor

This component descends from the above mass-flow pump (section 22.7). Like
the mass-flow pump it provides a mass flow rate, usually in a closed flow-loop,
with the pressure rise (or drop) across the component established by the flow
characteristics of the overall flow loop. You can see what this pressure rise is
by inspecting output variable FDP. As with the mass-flow pump you can uses
Sage’s optimizer to solve for the resistance of the flow loop to adjust FDP to a
predetermined value.

Unlike the mass-flow pump the adiabatic compressor adds the compressor
PV power input to the enthalpy flow stream. The ancestor mass-flow pump
implemented an isenthalpic flow stream as if compressor PV power input was
always balanced internally by an equal but opposite heat flow out of the pump.
The present compressor requires an aftercooler or other type of heat exchanger
in the flow loop to remove the heat of compression. The required PV power
input is a virtual part of the model and is indicated only as an output variable
(FWc). There is no actual PV power connection required to the compressor
from an external Sage component.

As Expander It is also possible to run the compressor backwards (e.g. reverse
the pressure change for the same mass flow rate) to model an adiabatic expander.
In this case there is enthalpy removed from the flow stream by the amount of
the expander PV power. In physical terms there must be something in the flow
loop to boost the pressure upstream of the expander. This might be another
adiabatic-compressor component acting as a true compressor upstream of the
expander.

Two in Series In other words, two adiabatic compressor components may be
arranged in series within a flow loop with the upstream component serving as the
compressor and the downstream component serving as the expander. However,
since the time-mean flow of both components is specified as input they must
both be exactly equal unless there is someplace for the excess mean flow to go.
Into a bypass flow path for example. Otherwise the solution will not converge.

Pressure Reference As with all Sage models, one pressure source is required
to establish the mean pressure. If a model contains one compressor then that
one pressure source suffices so long as the other components in the flow loop
determine the pressure change across the compressor. If a model contains two
compressors forming a closed flow loop then the pressure-drop across one of
them is indeterminate unless there are two pressure sources, attached to the
two flow segments between the two compressors. And so forth. See example
file JetEngine in the Apps\SCFusion\Samples\JetEngines sub-directory under the
installation directory.

In addition to the variables inherited from the mass-flow-pump, the adiabatic
compressor components adds the new variables:

238 CHAPTER 22. FLOW RESTRICTORS

Efficiency : (real, dimensionless) Adiabatic efficiency η, an input. For a com-
pressor the PV power input (−Wc) will be greater than the ideal isentropic
adiabatic power input by the factor 1/η. For an expander the PV power
output (Wc) will be less than the ideal adiabatic power output by the
factor η.

FWc : (Fourier series, W) PV power output Wc. The sign reflects the Sage
convention that positive numbers indicate energy flows out of the gas. So
a negative value indicates work flow into a compressor. A positive value
indicates work flow out of an expander. Usually the mean value (time-
mean power) is the only part of concern, but in some applications the
time-varying components may also be of interest.

FHneg, FHpos : (Fourier series, W) Stagnation enthalpy flows uA(ρe + P) at
the component neg and pos boundaries. These two replace output FH
inherited from the mass-flow pump.

The output AEfric inherited from the flow restrictor components remains
valid except instead of measuring the available energy loss due to flow resistance
it measures the available energy loss (T0 x entropy generation) due to compressor
inefficiency, from whatever cause.

The formulation for adding the PV power input to the enthalpy flow stream is
completely general and remains valid no matter what the mass-flow-rate looks
like. The enthalpy flow increment is evaluated each node of the time grid,
implicitly, based on the increase of entropy across the compressor consistent
with the input efficiency η. Entropy calculations use a general formulation that
does not assume ideal gas properties.

A few items documented previously under the mass-flow pump component
bear repeating here:

Because the set-point mass flow rate is a Fourier series input, it is possible to
produce pulsatile flows — including sinusoidal terms and higher harmonics —
as well as steady flows with the adiabatic compressor component. The subfields
of the mass flow rate can be optimized or referenced in constraints, as discussed
under the topic of Fourier-series variables in chapter 8. If you specify a nonzero
DC part of the mass flow rate, the mass-flow pump should be located within a
closed loop capable of supporting DC flow, otherwise the mean pressure drop will
be indeterminate and the solution will not converge — if DC flow is impossible,
then there is no amount of pressure drop that will force the required value.

The flow area Aflow is another input. It is present in order to define flow
velocity in the pump and normally its value does not matter much. However,
it should be large enough that the mean Mach number (output MachMean) is
substantially below one.

When starting from initial values or a re-initialized solution, an adiabatic
compressor in your model can slow down convergence, depending on the mag-
nitude of the flow specified. If this is a problem, try starting with a small or
zero DC component of mass flow rate initially and increase it gradually over the
course of several solutions. Also be sure to check that the initial temperature

22.10. ADIABATIC COMPRESSOR 239

H
–

H = H - W
+ – c

S
–

S = S +(W -W)/ T =
+ -- a c

S + (1-)W / T
– c

h

Compressor

W = W / < 0
c a

h

H
–

H = H - W
+ c–

S
–

S = S +(W -W)/ T =
+ -- a c

S + (1-1/)W / Th
c–

Expander

W = W > 0
c a

h

Figure 22.1: Enthalpy and entropy flows in compressor and expander modes
as determined by the sign of PV power output Wc. For positive flow enthalpy
flow always changes by −Wc according to a first-law energy balance; entropy
flow changes by the amount dQ/T where dQ is the difference between ideal and
actual PV powers Wa−Wc. Flow is isentropic (S+ = S−) when efficiency η = 1.

value (Tinit) is close to the initial temperatures of the components to which it
is connected.

22.10.1 Theory

Figure 22.1 illustrates the enthalpy flow and entropy flow relationships that
define the adiabatic compressor. The flow restrictor theory outlined in chapter
8 remains the same except for two changes:

1. The governing equations determining downwind energy densities ρe+ and
ρe− are revised to include the compressor PV work input to the enthalpy
flow stream.

2. A new state variable is added to the solution grid, corresponding to the
change of mass-specific enthalpy ∆h across the component due to PV
power output. This variable is solved implicitly according to the entropy
flow change illustrated in figure 22.1

Energy densities ρe+ and ρe− at the negative and positive component bound-
aries are computed implicitly according to an energy balance equation involving
incoming and outgoing enthalpy flows and compressor PV work input. For
positive mass flow rate this energy balance equation takes the form

H+ −Wc −H− = 0 (22.28)

240 CHAPTER 22. FLOW RESTRICTORS

where the H ’s are the enthalpy flows through the positive and negative bound-
aries and Wc is the PV power flow (positive for outgoing). Energy conservation
requires that the PV power output equals the product of mass flow rate and
mass-specific enthalpy change, or

Wc = −(ρuA)∆h (22.29)

Enthalpy flows may be represented in terms of state variables as

H =
ρuA

ρ
(ρe+ P) (22.30)

In the case of ρe+ , the enthalpy flow at the positive boundary H+ is taken
from local solution variables (including ρe+ itself) and the enthalpy flow at the
negative boundary H− is imported from the component across from the flow
connector at the negative boundary. The case for ρe− is similar, except the
internal and external enthalpy flows come from opposite boundaries. To avoid
the energy balance equation becoming indeterminate at zero mass flow rate, the
mass flow rate ρuA is divided out leaving the energy balance equation used for
determining ρe+ in the form

ρe+ + P+

ρ
+ ∆h−

(
ρe+ P

ρ

)

−

= 0 (22.31)

The solution variable ∆h (cp∆T for an ideal gas) is determined implicitly by
the mass-specific entropy change ∆s produced by compressor inefficiency.

∆s =

{
(1 − 1/η)∆h/T if (ρuA)∆h < 0 (expander)
(1 − η)∆h/T otherwise (compressor)

(22.32)

The governing equation for solving dh takes in the form

s+ − s− − ∆s = 0 (22.33)

The values of mass-specific entropies s+ and s− are calculated from solution
variables ρ and T at the component boundaries. Downwind values of ρ and T are
already part of the solution. Upwind values are imported from the components
across from the flow connectors at each boundary. In the case of an ideal gas and
ideal efficiency, entropy continuity leads to the well known adiabatic compressor
power equation

Wc = cp(ρuA)Tin

(

1 −
(
Pout

Pin

) γ−1
γ

)

(22.34)

where γ is the ratio of specific heats cp/cv.

22.11 Volumetric Flow Compressor

TVdotCompressor

This component models the time-average flow through a positive displacement
compressor, defined by a fixed volumetric displacement produced by pistons,

22.11. VOLUMETRIC FLOW COMPRESSOR 241

compression

n
in

n
out

r
c in
n n n

out c in
- r

Figure 22.2: For a positive displacement compressor, the volume of a unit mass
of fluid (specific volume) at the compressor inlet conditions νin and after com-
pression νout. The fraction rcνin (clearance volume) remains in the compressor
reducing the throughput to νout − rcνin.

rotating screws or cylinders, interleaved spiral scrolls or some such. A compres-
sor of the type that might be connected to the rotary valve of a GM cryocooler.
Except the flow at the inlet and outlet are steady, not pulsating. The time-
varying compressor mechanical and flow details are not modeled, nor is there
any actual gas volume within this component. So if you need to smooth out
pressure spikes from time dependent valves and such, you must include buffer
volumes separately.

The component descends from the previous adiabatic compressor compo-
nent. The main difference compared to an adiabatic compressor component is
that it specifies inlet volumetric flow rate V̇in and clearance volume ratio rc as
inputs, rather than mass flow rate, thereby relating more directly to the speci-
fications of an actual compressor and automatically adjusting mass flow rate as
a function of upstream and downstream pressures, like a real compressor.

Vdot : (real, m3/s) Steady volumetric flow rate V̇in at compressor inlet. If V̇in

is positive the inlet is presumed to be the negative end of the component
and the opposite if V̇in is negative.

Rclearance : (real, dimensionless) Compressor clearance volume ratio rc, defined
as the gas volume at the end of the compression process relative to the
volume at the beginning. See discussion below.

Figure 22.2 illustrates a unit mass of fluid at compressor inlet conditions
(left) and later after compression (right). Initial specific volume νin at the in-
let compresses down to volume νout at the exit. Of that νout an amount rcνin

remains in the compressor, where rc is defined as the compressor relative clear-
ance volume (Rclearance above). The remaining amount νout − rcνin discharges
from the compressor exit.

Evidently, compared to an ideal compressor with zero clearance volume the
effective volumetric flow rate of an actual compressor is reduced by the factor

νout − rcνin

νout
= 1 − rc

νin

νout

242 CHAPTER 22. FLOW RESTRICTORS

Except check-valves and this model component prevent negative flow when this
factor drops below zero. The reduction factor applies throughout the compressor
so the ideal inlet volumetric flow rate V̇in is reduced to the effective value

(

1 − rc
νin

νout

)

V̇in

The net mass flow rate is just the net volumetric flow rate divided by the specific
volume (ṁ = ρV̇ = V̇ /ν)

ṁnet =

(

1 − rc
νin

νout

)

V̇in/νin = (1/νin − rc/νout)V̇in

Net mass flow rate is a conserved quantity, the same at both ends. As rc → 0
the mass flow rate approaches that of an ideal compressor with zero clearance
volume. As rc → νout/νin the mass flow rate approaches zero.

In the case of compressing an ideal gas the adiabatic pressure ratio deter-
mines the specific volume ratio according to

νout

νin
=

(
Pin

Pout

)1/γ

where γ = cp/cv is the ratio of specific heats. So the relative clearance value
must be smaller than the right-hand side for there to be any net flow.

rc <

(
Pin

Pout

)1/γ

Another way to look at it (solving for Pout/Pin), the maximum pressure ratio
is

Pout

Pin
< r−γ

c

22.12 Pressure-Regulated Compressor

TRegCompres-
sor

This component descends from the previous adiabatic compressor component
except that the roles of pressure rise FDP and mass flow rate FRhoUA are re-
versed. It specifies pressure rise as an input and produces whatever mass flow
rate is required to achieve that pressure rise.

A pressure-regulated compressor is handy for those situations where the
pressures at the intake and discharge of the compressor are known. One of
these pressures must be established by a pressure source (pressure bottle icon).
To do that just connect an appropriate gas domain near the inlet or discharge
to the pressure source. Then the pressure rise FDP specified for the compres-
sor determines the other pressure according to the convention that FDP is the
difference (P+ − P−), where P+ is the pressure attached to the positive end of
the compressor (right-pointing arrow) and P− is the pressure attached to the
negative end (left-pointing arrow).

22.13. FLOW SEPARATOR 243

For this component to work properly it must be located in a flow loop for
which mass flow rate is free to vary and that can produce an equal but opposite
pressure drop for some reasonable mass flow rate.

22.13 Flow Separator

TGtSepr

This component separates a supersaturated incoming flow stream into distinct
vapor-phase and liquid-phase streams. It is designed for positive flow only, with
the supersaturated flow stream entering through the negative (left) boundary
and the vapor and liquid streams exiting through two positive (right) bound-
aries. The upper right flow connector is reserved for the vapor stream and
the lower right boundary is reserved for the liquid stream. The working gas
type must be TBSpline3Gas (section 15.1) for this component to work prop-
erly. Otherwise there will always be zero flow directed to the liquid stream.
BSpline3Gases are available in the default gas property file LowTGases.dta.

A flow separator is useful for modeling J-T coolers operating as gas liquefiers,
where some of the flow stream liquefies after expansion and is no longer available
to return through the recuperative counterflow heat exchanger. A flow separator
may be inserted into the Sage model just after the J-T expansion orifice. Since
Sage can only model continuous closed flow loops that do not abruptly end or
begin, the separated vapor and liquid streams must ultimately join together
again somewhere downstream of the flow separator. For example, the liquid
stream might pass through a vaporizing heat exchanger then merge with the
vapor stream at the warm end of the counterflow heat exchanger and re-enter
the compressor intake.

The supersaturated stream condenses inside a flow separator and something
must regulate the flow to the vapor and liquid exit streams consistent with the
vapor mass fraction of the condensate. What does this is a pressure drop (or
rise) ∆P introduced in the outgoing liquid stream, which regulates the flow
leaving through the liquid line. This corresponds to the physical reality of a
regulated pump of some sort. The flow through this pump is assumed to be
incompressible, which means that the fluid density and internal energy do not
change but there is an external pumping power input or output required equal
to the pressure change ∆P multiplied by the liquid-line volumetric flow rate
((ρUA)b+/ρb+). This pumping power appears as an output variable FWc.

A flow separator is designed to work with any incoming fluid state, not just
supersaturated. In the event the incoming fluid is a pure vapor (quality X = 1)
the flow just passes through unaltered from the incoming flow line (left) to the
outgoing vapor line (upper right), with zero flow out the outgoing liquid line
(lower left). Actually the liquid-line flow is never allowed to be exactly zero to
prevent solution convergence problems in downstream components. In the event
the incoming fluid is a pure liquid (unlikely) the flow passes through unaltered
to the outgoing liquid line.

A flow separator will work with flow in the reverse direction although it is
not clear what physical reality such operation corresponds to.

244 CHAPTER 22. FLOW RESTRICTORS

The input and output variables for a flow separator are:

Tinit : (real, K) Initial temperature. Used only for initializing or re-initializing
solution variables ρ and ρe. As such, its value does not affect the final
converged solution, but it may affect whether the solution converges at
all. It should be set to a value consistent with the initial temperatures of
adjacent components.

FWc : (FourierSeries, W) Pumping power done on the liquid flow stream by
the control pressure drop ∆P . The sign reflects the Sage convention that
positive numbers indicate energy flows out of the fluid. So a positive value
indicates expansion work leaving the flow separator. A negative value
indicates compression work entering the separator. No problem if small
but beware the Sage optimizer relying on such things to boost efficiency.

FT : (Fourier series, K) Gas temperature T .

FP : (Fourier series, Pa) Gas pressure P .

FDP : (Fourier series, Pa) Liquid-line control pressure rise (positive) or drop
(negative).

FH : (Fourier series, W) Stagnation enthalpy flow uA(ρe + P).

FRhoUA : (Fourier series, kg/s) Mass flow rate ρuA.

FX : (Fourier series, dimensionless) Quality (vapor mass fraction) of internal
state.

22.13.1 Theory

Flow separator analysis starts out similar to that of the flow reverser compo-
nent (section 18.9) with the implementation of internal state variables ρ (mass
density) and ρe (energy density) based on conservation of mass and energy for
a zero-volume component. Separating the presumed supersaturated incoming
fluid stream in to liquid and vapor parts is something new and requires a new
state variable X (vapor mass fraction or quality) and some help from the gas
equation of state as to the values of mass densities ρv and ρl and internal ener-
gies ev and el appropriate for saturated vapor and liquid phases at the prevailing
temperature and pressure. The diagram in figure 22.3 illustrates the key state
variables within a flow separator.

ρ

Mass density ρ is computed implicitly from the zero-volume mass-continuity
equation

(ρuA)a+ + (ρuA)b+ − (ρuA)− = 0 (22.35)

22.13. FLOW SEPARATOR 245

 	
�

(ρUA)−-
supersaturated

(ρUA)a+-
vapor

(ρUA)b+

-
liquid

ρ
X
T
P

ρe− ρe+

ρa+
ρea+

ρb+
ρeb+

ρb+
ρeb+

P + ∆P

Figure 22.3: State variables for flow separator

where the ρuA’s are the mass flow rates imported from flow connectors at the
three flow boundaries. Subscript a+ denotes the positive vapor-phase exit (up-
per right), subscript b+ denotes the positive liquid-phase exit (lower right) and
subscript − denotes the negative inlet (left). Implicit functions used for solv-
ing ρe also help to determine ρ. The usage in these other implicit functions is
consistent with ρ being consistent with the incoming flow state no matter what
the flow direction.

ρe

Energy density ρe is computed implicitly from an energy continuity equation.
For numerical reasons, it is broken into two distinct parts ρe+ and ρe−. The
first, used for the presumed case of positive flow, is implicitly solved by the
equation

ρe+ + P

ρ
= h− (22.36)

The second, used for the unanticipated but possible case of negative flow, is
implicitly solved by the equation

ρe− + P

ρ
= Xha+ + (1 −X)hb+ (22.37)

Separating ρe into two parts like this avoids the difficulty of using a single
mixed equation that changes right-hand sides on flow reversal. Pressures P
is explicitly calculated as explained below. The h’s in the above equations
denote the incoming mass-specific enthalpies evaluated using variables imported
from the associated flow connectors. The subscripts have the same meaning as
above. The quality X used as a weight factor in equation (22.37) is appropriate
because the mass flow rates through connectors a+ and b+ are always held in
the proportions of X to 1 −X.

246 CHAPTER 22. FLOW RESTRICTORS

Mass and energy densities ρ and ρe− are exported directly to the negative
flow connector while ρ and ρe+ form the basis of the mass and energy densities
exported to the two positive flow connectors, but are not directly used for that
purpose. They must be first broken down into vapor and liquid values ρa+, ρb+,
ρea+ , ρeb+.

P , T

The pressure P appearing in equations (22.36) and 22.37) is calculated explicitly
from the equation of state P (ρ, T). This requires temperature which is calcu-
lated from the zero-velocity equation of state, as T (ρ, ρe−, 0) or T (ρ, ρe+ , 0).
(The 0 in the argument list is velocity. See section 18.9 on flow reversers for
a justification of the zero-velocity assumption.) The formulation T (ρ, ρe+ , 0) is
used when flow is positive and the formulation T (ρ, ρe−, 0) in the event flow
is negative. The implication, based on the way ρe+ and ρe− are calculated,
is that P and T are consistent with the incoming flow state no matter what
the flow direction. Pressures is required in the solution grid so that the flow
connectors can properly enforce Bernoulli’s law across the connections. P is
directly exported to the negative flow connector and the positive vapor-only
flow connector a+, but the pressure exported to the liquid-only connector b+ is
P + ∆P , where the ∆P is used to control the mass flow rate ratios for the two
streams, as noted above.

X (Quality)

The vapor mass fractionX is defined in terms of vapor density ρv, liquid density
ρl and bulk density ρ as (see section 15.1.5)

X ≡ 1/ρ− 1/ρl

1/ρv − 1/ρl
(22.38)

In the flow separator model ρ is understood as that of the density state variable
as determined by equations (22.35), (22.36), (22.37), and ρv and ρl are taken
to be dew-point and bubble point values ρd and ρb, respectively, which come
directly from the equation state as a functions of T . Evidently one of the things
a flow separator has to do maintain mass balance is pass X mass units of vapor
at density ρv to the vapor flow connector a+ and 1−X units of liquid at density
ρl to the liquid flow connector b+. To avoid problems when ρ is not strictly
between ρv and ρl flow separators actually calculate quality according to the
conditional formula

X =

1 if ρ ≤ ρv

from equation (15.20) if ρv < ρ < ρl

0 if ρl ≤ ρ
(22.39)

But even this is not always valid because not all equation-of-state types available
in Sage models define ρv and ρl and those that do, do so only below the critical

22.13. FLOW SEPARATOR 247

temperature. In the event ρv and ρl are not defined, flow separators assume
X = 1 (all vapor), and all incoming flow passes directly from the negative
connector to the vapor-phase flow connector a+.

∆P

Flow separators need ensure that the ratio of mass flow rates through the vapor
and liquid connectors a+ and b+ are consistent with the vapor mass fraction
X. Within the solution scheme of Sage the only way to control mass flow rate
is via pressure, as is the case in an actual physical system. So flow separators
implement pressure drop ∆P as state variable solved implicitly by the equation:

X(ρuA)b+ = (1 −X)(ρuA)a+ (22.40)

Flow separators add this ∆P to the pressure exported to the liquid flow con-
nector b+ but do not modify exported density ρb+ and energy density ρeb+.
This is a reasonable approximation for the liquid line because of the nearly in-
compressible nature of the liquid state. The assumption that fluid remains in
the liquid state after a pressure change is questionable in the case the pressure
change reduces the pressure. Why would the liquid not then vaporize? The
answer is that it will in the downstream component, as it would in reality. The
physical interpretation of what happens in the flow separator is that the liquid
remains in a superheated state. The degree of the pressure change required to
distribute the liquid flow and its effect on the downstream state depends on the
total system model.

Auxiliary Flow-Connector Variables

Variables ρa+, ρea+ ρb+ and ρeb+ appearing in figure (22.3) are the values of
mass density and internal energy passed to the vapor and liquid flow connectors.
They are not solved as part of the solution grid but rather just calculated when
required as functions of the state variables and the gas equation of state, as
follows:

ρa+ =

{
ρv if 0 < X < 1
ρ otherwise

(22.41)

ρea+ =

{
ρvev if 0 < X < 1
ρe+ otherwise

(22.42)

ρb+ =

{
ρl if 0 < X < 1
ρ otherwise

(22.43)

ρeb+ =

{
ρlel if 0 < X < 1
ρe+ otherwise

(22.44)

The equation of state provides the equilibrium vapor and liquid mass densities
and mass-specific energies ρv, ρl, ev and el as functions of T . Actually, the
equation of state supplies mass-specific internal energies εv and εl, but with the

248 CHAPTER 22. FLOW RESTRICTORS

zero-velocity assumption these are equivalent to the mass-specific total energies
(internal plus kinetic) ev and el.

The abrupt transitions suggested by the above equations at X = 0 and
X = 1 are bad for solution convergence so Sage replaces the abrupt transitions
with smooth transitions over the ranges 0 < X < ε and 1 − ε < X < 1, where
ε is a small number (ε = 0.1 in the current implementation). Sage does the
smoothing in such a way that the densities and specific energies ρv, ρl, ev and
el are always consistent with the vapor quality X. The smoothing does not
affect the mass flow distribution into the vapor and liquid lines.

22.14 Evaporator-Condenser

TGtEvap

This component adds or removes heat from an incoming two-phase flow stream
to completely evaporate or condense it without changing its temperature or
pressure. Heat is added or removed through a built in heat-flow connection and
the temperature of the connection relative to the incoming fluid temperature
determines whether the fluid evaporates or condenses. If the connector temper-
ature is higher than the fluid temperature by the amount ∆Tf (input DTfull)
then it fully evaporates. If it is lower by the amount ∆Tf then it fully condenses.
If somewhere between then the there is a smooth transition between evaporation
and condensation with no heat transfer when the connector temperature equals
the fluid temperature. The incoming flow stream must be below the critical
temperature and pressure for evaporation or condensation to occur. Otherwise
this component just passes the fluid without change.

In a physical sense, this component models the high heat transfer rates of
boiling or condensing two-phase flow without bothering about heat exchanger
details. The working gas type must be TBSpline3Gas (section 15.1.2) for the
component to work properly. Otherwise the fluid will pass through without
change. BSpline3Gases are available in the default gas property file LowT-
Gases.dta. The component works for flow in either direction.

The need for this component arose from modeling a J-T cooler where the
fluid exits the expansion orifice as a two-phase mist and the liquid component
subsequently contacts a downstream warm surface that is a poor heat exchanger
but suffices to evaporate the fluid through boiling heat transfer. In such a case,
once the fluid has fully evaporated the heat transfer rate diminishes greatly so
the vapor temperature stops increasing and remains below the warm surface
temperature. This could not be modeled by simply directing the two-phase
flow stream into an ordinary heat exchanger component because Sage’s single-
phase heat transfer formulation does not provide a high enough heat transfer
coefficient to boil-off the liquid unless the heat exchanger is a very effective one
(large wetted surface, small hydraulic diameter). In that case, once evaporated
the fluid continues heating to near the heat-exchanger wall temperature, which
is not physically realistic.

The input and output variables for an evaporator/condenser are:

Tinit : (real, K) Initial temperature. Used for initializing or re-initializing solu-

22.14. EVAPORATOR-CONDENSER 249

tion variables ρ and ρe and steady wall temperature Tw. As such, its value
does not affect the final converged solution, but it may affect whether the
solution converges at all. It should be set to a value consistent with the
initial temperatures of adjacent components.

DTfull : (real, K) Temperature difference ∆Tf (positive number) at which evap-
oration or condensation is complete. There is a smooth transition between
evaporation and condensation in the range −∆Tf < (Tw − T) < ∆Tf

TwStdy : (real, K) Steady wall temperature Tw defined by external heat-flow
connection.

QwMean : (real, W) Time average heat transfer rate to fluid from external
connection. Positive for evaporation. Negative for condensation.

FT : (Fourier series, K) Gas temperature T .

FP : (Fourier series, Pa) Gas pressure P .

FH : (Fourier series, W) Downstream stagnation enthalpy flow uA(ρe+ P).

FRhoUA : (Fourier series, kg/s) Mass flow rate ρuA.

FX : (Fourier series, dimensionless) Downstream fluid quality (vapor mass frac-
tion). A measure of success in the evaporation or condensation process.

22.14.1 Theory

The evaporator-condenser component is essentially a flow restrictor (chapter 22)
with zero velocity and pressure drop and a provision to add or remove heat to
or from the fluid in order to affect a phase change.

The solution grid is a single time ring containing state variables ρ, ρuA, ρe,
T , P , X. These have the same meanings as in the stirling-class gas domains, ex-
cept X which is the fluid vapor-fraction. Generally, the variables in the grid are
understood as downwind values, except for ρe which is separated into negative-
and positive-boundary values. The solution enforces mass and energy continuity
across the flow restriction. Neither space nor time differencing is required any-
where. Exact meaning and method of calculation for all variables are explained
in detail below.

ρ

Mass density ρ is computed implicitly from the zero-volume mass-continuity
equation

(ρuA)+ − (ρuA)− = 0 (22.45)

where (ρuA)+ and (ρuA)− are the values imported from the positive and nega-
tive flow connectors. This forces mass flow rate in the adjoining flow connectors
to be equal. Implicit functions used for solving ρe also help to determine ρ. The
usage in these other implicit functions is consistent with ρ being the downwind
value.

250 CHAPTER 22. FLOW RESTRICTORS

ρuA

Mass flow rate ρuA is computed explicitly as the average of the values in the
adjoining flow connectors:

ρuA =
1

2
[(ρuA)+ + (ρuA)−] (22.46)

This fulfills the requirement that the flow restrictor use imported (ρuA)’s in its
interior solution.

ρe

Downwind energy density ρe is computed implicitly by solving the energy con-
tinuity equation written in the form

ρe+ P

ρ
= hi + Ew (22.47)

where ρe and P on the left are downwind state variables while hi and Ew on the
right are the upwind mass-specific enthalpy and heat input (J/kg). Downwind
mass-specific energy ρe presumes zero kinetic energy (zero velocity). Upwind
hi is evaluated using variables imported from the component across the flow
connection in the upstream direction. For an ideal gas h reduces to cpT in the
zero-velocity limit where kinetic energy may be neglected.

For numerical reasons it is convenient to separate ρe into two variables ρe−
and ρe+, thought of as lying at the negative and positive boundaries of the flow
restrictor. The downwind value is ρe+ when flow is positive and ρe− when flow
is negative. This is similar to what is done for flow restrictors. (see section 22)

Sage calculates phase-changing heat input Ew on non-physical principals as
a function of the temperature difference (Tw − T) between the external steady
heat-flow connection and the fluid. If the fluid is in a two-phase state and
Tw > T , Sage calculates Ew so as to evaporate the fluid, with full evaporation
at Tw = T + ∆Tf . If Tw < T , Sage calculates Ew so as to condense the fluid,
with full condensation at Tw = T −∆Tf . If Tw is between T +∆Tf and T −∆Tf

then Ew produces a smooth transition between evaporation and condensation.
Repeating the above in math-speak, if the fluid temperature is above the

critical temperature then Sage sets Ew = 0. Otherwise Sage formulates Ew in
terms the dimensionless temperature difference

∆τ =
Tw − T

∆Tf
(22.48)

as

Ew =

{
(hv − hi)W (∆τ) if ∆τ > 0
(hi − hl)W (∆τ) if ∆τ < 0

(22.49)

On the right there are three mass-specific enthalpy values: the incoming or
upwind value hi and the values at the vapor and liquid boundaries of the two-
phase region at the same temperature, hv and hl. If the incoming fluid is in a

22.14. EVAPORATOR-CONDENSER 251

two-phase state then hl < hi < hv. Function W is a smooth transition function
that returns −1 for ∆τ ≤ −1, 1 for ∆τ ≥ 1 and a first-derivative continuous
transition between the two for −1 < ∆τ < 1. It is generally defined by

W (x) =

1 if x ≥ 1
1 − (x− 1)2 if x < 1
(x+ 1)2 − 1 if x ≤ 0
−1 if x < −1

(22.50)

T

Temperature T is computed explicitly in terms of other state variables from the
zero-velocity equation of state

T = T (ρ, ρe, 0) (22.51)

The value of ρe is taken as ρe− for negative directed flow and ρe+ for positive
directed flow. In other words, the downwind value. Since ρ is also a downwind
value the value of T is a downwind value.

P

Pressure P is computed explicitly in terms of other state variables from the
equation of state function

P = T (ρ, T) (22.52)

X

Sage calculates downstream fluid qualityX (vapor fraction) from other solution
variables exactly like it does for the flow-separator component, as discussed in
section 22.13.

252 CHAPTER 22. FLOW RESTRICTORS

Chapter 23

Miscellaneous Parasitics

Parasitic components model some of the loss mechanisms that do not fall into
the class of thermal solids or gas components.

23.1 Annulus (Shuttle/Seal/Appendix)

TAnnulus

The annulus component is intended for modeling shuttle heat transfer and
clearance-seal or appendix-gap gas flow. Shuttle heat transfer is built-in while
annular-gap gas flow is optional by way of toolbox-created child model compo-
nents. It is actually a descendant of the basic heat-exchanger model component
(chapter 20) and inherits several variables from that class. It is born as a child
to a composite piston-cylinder component (chapter 24) which supplies a geomet-
rical context in terms of two tubular canisters (piston and cylinder), including
their common length, diameter, initial temperature distribution, relative dis-
placement as a phasor variable and thermal properties. An annulus adds the
variables:

XNeg : (real, dimensionless) The dimensionless x position of the annulus nega-
tive endpoint in the parent cylinder coordinate frame. x = 0 is the parent-
cylinder negative endpoint and x = 1 is the positive endpoint. Default is
XNeg = 0 for the case where the annulus negative endpoint coincides with
the parent cylinder negative endpoint.

XPos : (real, dimensionless) Same as XNeg except for the positive annulus
endpoint. Default is XPos = 1 for the case where the annulus positive
endpoint coincides with the parent cylinder positive endpoint.

Gap : (real, m) Radial clearance gap g between the parent cylinders.

Length : (real, m) Annulus length. Not necessarily the same as the parent
cylinder length, reflecting inputs XNeg and XPos.

TsNeg : (real, K) Temperature at annulus negative endpoint.

253

254 CHAPTER 23. MISCELLANEOUS PARASITICS

TsPos : (real, K) Temperature at annulus positive endpoint.

QNeg : (real, W) Shuttle heat flow at annulus negative endpoint.

QPos : (real, W) Shuttle heat flow at annulus positive endpoint.

AEQ : (real, W) Available energy loss to shuttle heat flow.

Within the annulus toolbox are tools for creating an optional foil-matrix
gas-domain with one of three wall models: isothermal, conductive surface or
floating. The isothermal wall is for modeling thermally-anchored seals (such as
piston seals), although you must remember to account for any wall heat flow
in your overall energy balance. The conductive surface is for thermally-isolated
walls, such as appendix-gap walls. It inherits solid material and cross-sectional
area information from the parent canisters and models the solid conduction
path corresponding to their combined cross sections over that portion of their
length specified by the XNeg and XPos input variables. The floating model is
also an option for thermally-isolated walls, except that it does not model axial
conduction. It can be useful on occasion to avoid for double-accounting for
solid axial heat flows when they are separately considered in the parent canister
models. However, floating walls with NCell > 2 often converge to unrealistic
temperature distributions due to poor thermal anchoring.

You connect the shuttle-heat-transfer part of an annulus into the grand
scheme of your SCFusion model much like you would a simple bar conductor
— typically, at both ends to a temperature source (sink) objects via built-in
steady-heat-flow boundary connectors. If you create a child gas domain, its
flow connectors are connected to other gas domains as is appropriate in your
model scheme. Two annulus instances may be ganged together in series to
model a seal-appendix combination.

There are variations of this component for parallel and multi-length con-
tainers (chapter 27) which support x-distributed heat flow connections to other
components in the container. Inside parallel containers NCell and Length are in-
herited and XNeg, Xpos fixed at 0 and 1. In multi-length containers only NCell
is inherited allowing XNeg, XPos to be set independently, thereby establishing
Length as a fraction of the parent Length.

23.1.1 Theory

Shuttle heat transfer is a somewhat complicated process whereby, in the presence
of a temperature gradient, the moving wall of an annulus alternately picks up
from and deposits heat to the stationary wall, with the net effect of transporting
heat in the axial direction. This picking up and depositing of heat is governed by
the time-varying heat conduction in the transverse direction across the gas-filled
annular gap, between and into the two walls. The shuttle heat transfer loss qs

may be presented in the form of an enhancement to molecular gas conduction
qm within the clearance gap, although it is implemented separately from the gas

23.2. RADIATION TRANSPORT PATH 255

in Sage. The following formula is due to Rios [53]:

qs

qm
=

1

2
(x/g)

2 1 + λ

1 + λ2
(23.1)

where

g = radial clearance gap
k = molecular gas conductivity
ks = wall solid conductivity
qm = −k ∂T

∂x molecular conduction heat flux
x = relative displacement amplitude
λ = 1 + (k/g)[(δs/ks)1 + (δs/ks)2]; the subscripts refer

to the inner and outer walls

δs =
√

2ks/(ωρscs); thermal penetration depth
cs = wall solid specific heat
ρs = wall solid density
ω = angular frequency

The above formula applies to the case of thick walls, where the wall thickness
w is larger than the thermal penetration depth δs, for each wall. When this is
not the case, shuttle heat transfer is reduced, because a thin wall cannot hold
as much heat as a thick wall in the transverse heat-flow part of the shuttle
mechanism. In fact a thin wall can hold only about w/δs as much heat. So,
whenever one of the walls is thin (w/δs < 1), Sage scales the above formula by
the ratio of the smaller of w/δs for the two walls.

23.2 Radiation Transport Path

TQrad

The radiation transport path embodies a simple model of radiant heat transfer
between two gray bodies. It is plug-compatible with a simple bar conductor
and comes with two built-in steady heat flow connectors at either x end for
connection to a point temperature source and sink. It is born as a child to a
parent model component which supplies the radiation frontal area. A radiation
transport path has variables:

Emmis : (real, dimensionless) Gray-body emissivity ε. A number between 0 and
1. ε = 1 for an ideal black body. ε ≈ 0 for a silvered surface.

TsNeg : (real, K) Temperature Tn of negative x surface.

TsPos : (real, K) Temperature Tp of positive x surface.

QNeg : (real, W) Radiation heat flow at negative x surface.

QPos : (real, W) Radiation heat flow at positive x surface.

AEQ : (real, W) Available energy loss to radiation heat flow.

256 CHAPTER 23. MISCELLANEOUS PARASITICS

23.2.1 Theory

A radiation transport path models in-vacuum radiation energy transport be-
tween two gray body surfaces with same area and emissivity, presuming all the
radiation leaving one surface reaches the other and vice-versa. This may be
formulated as

qr = σ
ε

2 − ε

(
T 4

n − T 4
p

)
(23.2)

where

qr = radiation heat flux
Tn = temperature of negative x surface
Tp = temperature of positive x surface
ε = gray-body emissivity
σ = 5.669E–8 W/(m2 K4); Boltzmann constant

Many radiation loss situations in SCFusion machines can be modeled as radi-
ation down a long thin tube, hot at one end and cold at the other. As a first
approximation the radiation loss down the tube can be modeled as the average
radiation down a uniform black-walled tube with a linear temperature variation
along the wall. This can be reformulated into an equivalent emissivity for the
above radiation-loss formulation. Reference [24] works out a simple correlation
for equivalent emissivity ε (input Emmis) as a function of tube length to diam-
eter ratio L/d, valid for 2 < L/d < 20 and a hot-to-cold temperature ratio of
3.

ε ' 0.93 (L/d)
−0.68

(23.3)

When plotted this equivalent emissivity looks like this:

Tube-average radiation loss

as equivalent emissivity in Sage formulation

Th/Tc = 3

y = 0.9308x
-0.6798

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20

L/d

e
m

m
is

s
iv

it
y

Chapter 24

Composite Model
Components

Composite model components are high level components that work like other
model components except that they have built in child models that you cannot
destroy. They automatically take care of some of the geometrical relationships
among these built-in components that would otherwise prove bothersome to
you.

24.1 Piston-Cylinder Composites

Piston-cylinder composites appear in the root-level SCFusion model toolbox.
They all represent some form of piston within a cylinder, with capability to
model the interaction between the two. Built-in are two nested tubular canister
child components serving as the moving piston (shell) and the fixed cylinder
(liner). The descendants below also build-in various types of moving-part child
components.

You treat these built-in components just as if you had created them yourself.
For example, you may put a regenerator matrix and gas domain within the
moving shell, to serve as a regenerative displacer (chapter 19). Or you may add
area attachments to the moving part (chapter 16) for connection to variable-
volume gas domains (chapter 18).

Piston-cylinder composites also come with a toolbox with which you may
create your own custom child model components. Available are springs and
dampers for attachment to the moving part and a shuttle-heat-transfer annulus
for modeling the interaction between the shell and liner, including possible gas
flow.

Piston-cylinder composites are born without connectors of any sort. Any and
all connectors come from the child components within and must be moved up to
the top level if you wish to connect them to other root-level model components.

Variables common to all piston-cylinder composites are:

257

258 CHAPTER 24. COMPOSITE MODEL COMPONENTS

NCell : (dimensionless) The number of spatial nodes in the computational grids
of all underlying model components having such grids. Changing this
variable causes these computational grids to re-initialize themselves. In-
creasing NCell generally increases solution accuracy at the cost of greater
solution time.

Length : (real, m) Shell and liner length in x direction.

Dliner : (real, m) Cylinder liner outside diameter, reflecting wall thickness of
liner

Dshell : (real, m) Moving shell outside diameter.

Tinit : (cubic spline, W) Axial temperature distribution T (x) where x = 0 is
the negative endpoint and x = 1 is the positive endpoint.

The working gas type (properties) comes from the root model component.
There are variations of piston-cylinder composite components for paral-

lel and multi-length containers (chapter 27) which support x-distributed heat
flow connections to other components in the container. Inside parallel contain-
ers NCell, Length and Tinit are inherited from the container. In multi-length
containers only NCell and Tinit are inherited allowing Length to be set indepen-
dently.

24.1.1 Free-Piston and Cylinder

TGtRcpCyl

This component adds a built-in reciprocating mass intended as the basis for free-
piston or free-displacer modeling. Overstroking or large time-average offsets are
possible with the reciprocating mass, depending on how it connects with the
larger model. One way to deal with this problem in early stages of design is to
connect the reciprocator to an external constrained piston to force it to move in
a prescribed manner, removing the connection later after you have implemented
the proper combination of area attachments, springs, etc.

24.1.2 Constrained Piston and Cylinder

TGtPisCyl

This component adds a built-in constrained piston (or displacer) intended for
first-approximation kinematic modeling or free-piston design work. The piston
motion Fourier-series coefficients (mean + harmonic amplitudes and phases) are
specified as input. Overstroking is no longer a problem with this option. By
proper use of constraints you can set up an optimization problem to solve for
the proper combination of area attachments, springs, etc., to make the piston
run properly when you switch to free-piston mode.

For example, you could attach a spring to the piston and set up one area
attachment to represent a drive rod. You could then optimize the spring stiffness
and rod area subject to the constraints that the real and imaginary parts of the
required boundary force (F.real and F.imag) are both zero. You could chose to
optimize other combinations of free-piston variables as well, provided you wind
up with two independent degrees of freedom.

24.1. PISTON-CYLINDER COMPOSITES 259

24.1.3 Simple-Crank Piston and Cylinder

TGtCrankPisCyl

This component adds a built-in simple-crank kinematic piston intended for mod-
eling a kinematically driven piston using geometrical mechanism inputs. With
these inputs you have a handle on optimizing the mechanism or introducing
constraints in terms of them.

24.1.4 Time-Ring Free-Piston and Free-Cylinder

TGtRcpFreeCyl

This component is similar to the free-piston and cylinder component except it
adds another built-in reciprocating mass representing the moving cylinder or
casing of a so-called “free cylinder” machine. The main reason for including
the moving cylinder in this component is so it can pass the relative motion
between the piston and cylinder to any annulus child components (see chapter
23) for purposes of calculating shuttle heat transfer. In free-cylinder machines
the cylinder and piston can both have large amplitudes with respect to a fixed
reference frame yet be moving almost in parallel so that the relative amplitude
between them is small. So it is important to calculate shuttle heat transfer
based on the relative piston motion, not absolute motion.

The mass of the cylinder reciprocator should include all the mass rigidly
attached to the cylinder. If you want to allocate some of the mass to an external
reciprocating mass you can do so provided you connect the two reciprocating
masses together with a force connection, which will force them to move together
with the same amplitude and phase. Generally the cylinder reciprocator will
have area attachments representing volume displacements to other gas spaces in
your model and be connected to ground with a spring and damper, representing
the suspension and load.

Keep in mind that in a free-cylinder model, both piston and cylinder motions
are understood as being relative to a fixed coordinate frame. This is different
than the usual mind-set when thinking about stirling-cycle thermodynamics
where the displacer amplitude, say, really refers to the amplitude of the dis-
placer relative to the cylinder. When working with a free-cylinder model you
must make all such implicit understandings explicit in the model by providing
appropriate volume displacements to any affected variable-volume gas spaces
via area attachments to the moving cylinder.

There is no corresponding constrained-cylinder variation of this component.
If you want to constrain the cylinder motion, or the piston motion for that
matter, you can just connect it to an external constrained piston component
using a force connection. The two components will then move together with
the same motion. During the solution process, the force between them will
automatically accommodate to produce whatever force is necessary to drive the
reciprocating mass. You can always break the connection later to implement
“free” motion.

260 CHAPTER 24. COMPOSITE MODEL COMPONENTS

Chapter 25

Electromagnetic
Components

The ultimate purpose of electromagnetic components is to model linear mo-
tors and alternators from first principles as part of an overall SCFusion model.
Available components range from simple electrical components like resistors
or capacitors to components representing moving magnets or coils in interact-
ing with time-varying electro-magnetic fields. Linear motors constructed from
these components supersede the elementary linear-motor components of section
29.3.12 offered in earlier Sage version.

Electromagnetic components are connected to each other with current and
magnetic flux connections representing time-ring (periodic time grid) values at
the terminals or end poles of the component. They also sometimes have me-
chanical force connections for attachment to moving parts (chapter 16). Current
and magnetic flux connections were introduce for version 9 in 2012

25.1 Connection Child Components

Electromagnetic components have two ends corresponding to the two leads on
a resistor or capacitor or the two poles of a permanent bar magnet. Some come
with built-in electrical current or magnetic-flux connections at the two ends (see
section 11.4). Others allow you to create any number of such connections at
either end using terminal or pole child models, which you drag and drop into
your edit form.

261

262 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Icon Purpose

time-ring negative terminal

time-ring positive terminal

time-ring negative pole

time-ring positive pole

When you drop one of these into the edit form, it is born with a connection
arrow which you can then move up one level to the parent-model page for
connection there to a mating connector in another component. You decide
which connectors get connected where from the context of your problem and
subsequent documentation.

25.2 Electromagnetic Materials

Certain electromagnetic model components have enumerated type variables
(Conductor and Material) that select an electromagnetic material from a list-box
of named materials. The materials are either non-magnetic electrical conduc-
tors, soft ferromagnetic materials or permanent magnets. Each has its own set
of properties made available to the Sage application.

Electrical Conductor Properties There are only two properties:

Density : (kg/m3) mass density ρs

Rs(T) : (Ohm-m) cubic-spline data pairs (T, σ(T)) of resistivity σ as a function
of temperature T

Soft Ferromagnetic Material Properties Include the above electrical prop-
erties in addition to:

Mur(T) : (dimensionless) cubic-spline data pairs (T, µr(T)) of maximum rela-
tive permeability µr

Jsat(T) : (T) cubic-spline data pairs (T, Js(T)) of saturation magnetic polar-
ization Js

25.3. SIMPLE ELECTRICAL COMPONENTS 263

Hcb(T) : (A/m) cubic-spline data pairs (T,HcB(T)) of induction coercive force
HcB

Permanent Magnet Properties Include the above electrical properties but
replace the above ferromagnetic properties with these properties particular to
permanent magnets:

Kjh : (dimensionless) magnetization curve J(H) shape parameter Kjh (0.5 <
Kjh < 1)

Br(T) : (T) cubic-spline data pairs (T, Br(T)) of residual magnetic flux density
Br at H = 0

Hcj(T) : (A/m) cubic-spline data pairs (T,HcJ(T)) of magnetization coercive
force HcJ

25.3 Simple Electrical Components

Simple electrical components can model stand-alone elementary electrical cir-
cuits or serve as circuit elements that regulate voltage and current in more
complicated electromagnetic models involving the electrical coil components of
section 25.4.

25.3.1 Common Variables

Simple electrical components share some common output variables although not
all are present, depending on the component:

FVneg : (Fourier series, V) Voltage at left (negative oriented) end V−.

FVpos : (Fourier series, V) Voltage at right (positive oriented) end V+.

FV : (Fourier series, V) Uniform voltage Vo.

FDeltaV : (Fourier series, V) Voltage drop ∆V = V+ − V−.

FI : (Fourier series, A) Average of the electrical currents at the two ends (I− +
I+)/2.

FWe : (Fourier series, W) Electrical power delivered to the component. The
instantaneous electrical power delivered to component is W = −I∆V .
Output FWe is just the Fourier series representation of W as a function
of time.

264 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Positives and Negatives In the context of electrical components the terms
negative and positive can refer to two distinct things, the sign of the electrical
charge or the physical orientation of the Sage component. So to minimize con-
fusion the terms left end and right end are used to refer to the negative-oriented
and positive-oriented ends of components. This terminology is consistent with
the way components are displayed in the edit window.

However in mathematical symbols the left and right ends are still denoted
with − and + subscripts because there are no conventional symbol for right and
left. So for example, V− refers to voltage at the left end of a component and V+

to voltage at the right end.

Electrical current sign convention Sage follows the unfortunate conven-
tion that electrical current represents a flow of positive charges. Together with
the general Sage convention that positive flows are reckoned from the left to
the right component ends, this means that a positive current flow corresponds
to positive charges flowing in the positive direction or negative charges flowing
in the negative direction. So in the case of a simple electrical resistor a nega-
tive voltage drop ∆V (voltage at right end lower than at left end) produces a
positive current flow, which actually corresponds to a flow of electrons in the
negative direction.

25.3.2 Connection Block

TGtEblk

This component functions like a conduction path on a printed circuit board
that connects together the leads of several electrical components. Within a
connection block you can drop in any number of negative or positive terminals
depending on which components you are interconnecting. All leads attached to
a connection block share a common voltage which is solved as part of the overall
model so as to zero the net current flow, summed over all connections. There
are no required inputs for a connection block.

25.3.3 Voltage References

TGtVref

This component is similar to the above connection block except you explicitly set
the voltage. It functions something like a ground connection. In any electrical
circuit the voltage is indeterminate unless you specify the absolute voltage (usu-
ally zero) at least one point. Otherwise adding an arbitrary constant offset Vo to
all the voltages of the circuit would produce an equivalent circuit (same voltage
drops and currents). This component allows you to specify reference voltages
as an arbitrary periodic time grid if you should want to do that. Generally
you will connect a voltage reference to one point of an electrical circuit using a
positive or negative facing terminal. You may ground a circuit at more than one
point using voltage references with different voltages to simulate ground current
loops.

Additional inputs compared to the variables listed above are:

25.3. SIMPLE ELECTRICAL COMPONENTS 265

FV : (Fourier series, V) Voltage offset Vo.

A voltage reference is the only electrical component where the net current flow
into or out of the component can be non-zero — where the current flow need
not be the same at both ends.

25.3.4 Voltage Source

TGtVsrc

This component establishes the voltage drop ∆V across two terminals of an
electrical circuit as an input. The voltages and currents in the rest of the circuit
respond accordingly. A sinusoidal voltage source is a good representation of the
sinusoidal power grid in that it provides whatever current necessary to produce
the required voltage drop across the terminals. With the addition of higher
harmonics a voltage source might represent the output of an inverter.

Additional inputs compared to the variables listed above are:

FDeltaV : (Fourier series, V) Fixed ∆V overriding above dependent variable.

25.3.5 Current Source

TGtIsrc

This component establishes the current flow I between two terminals of an
electrical circuit as an input. It supplies whatever voltage drop is necessary
to produce the required current. The voltages and currents in the rest of the
circuit respond accordingly.

Additional inputs compared to the variables listed above are:

FI : (Fourier series, A) Fixed current I overriding above dependent variable.

25.3.6 Resistor

TGtEres

This component represents a simple resistor with input

R : (real, Ohms) Electrical resistance R.

It imposes a voltage drop between the negative and positive terminals according
to Ohm’s law

∆V = −IR (25.1)

Where I is the electrical current. The minus sign is justified because a positive
current flow I > 0 implies voltage at the left end V− is higher than voltage at
the right end V+, so ∆V = V+ − V− < 0.

25.3.7 Capacitor

TGtEcap

This component represents a simple capacitor with input

C : (real, Farads) Electrical capacitance C.

266 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

It is governed by this relationship between current I and voltage drop ∆V :

I = −C d

dt
(∆V) (25.2)

The minus sign is justified because a positive current flow I > 0 implies voltage
increasing at the left end V− (positive charge accumulating) and decreasing at
the right end V+ (negative charge accumulating), so d/dt(∆V) < 0.

25.3.8 Inductor

TGtEind

This components represents a simple inductor with input

L : (real, Henries) Electrical inductance L.

It is governed by this relationship between voltage drop ∆V and current I:

∆V = −LdI
dt

(25.3)

The minus sign is justified because a voltage higher at the left end than the
right end (∆V < 0) accelerates current in the positive direction (dI/dt > 0).

25.3.9 Diode

TGtEdiode

This component represents a solid-state diode with inputs

Rfwd : (real, Ohms) limiting forward-bias dynamic resistance Rf (slope of volt-
age vs current curve). Establishes a lower bound on resistance.

Rrev : (real, Ohms) limiting reverse-bias dynamic resistance Rr. Establishes an
upper bound on resistance.

Isat : (real, Amps) Reverse-bias saturation current Is. This is a property of the
particular diode. You can find typical values in manufacturer datasheets.
The default value of 0.1 mA is probably close enough for most purposes.
The sign determines the diode polarity. For negative Is the forward-bias
current direction is positive and vice-versa.

A diode imposes a voltage drop between the negative and positive terminals
according to Shockley’s diode equation, with linear extensions for large negative
or positive currents, as explained below. The Shockley equation that covers both
polarity directions is

I =

−Is
(

e−
∆V
Vt − 1

)

if Is < 0

−Is
(

e
∆V
Vt − 1

)

if Is > 0
(25.4)

Where I is the actual electrical current, Is is the reverse-bias saturation current,
∆V = V+−V− is the voltage drop and Vt is the so-called thermal voltage. Is and

25.3. SIMPLE ELECTRICAL COMPONENTS 267

5 6 7 8 6

5 6 7 9 :

; < = > <

5 6 7 6 :

6 7 6 6

6 7 6 :

6 7 9 6

6 7 9 :

6 7 8 6

5 8 7 6 ? 5 6 @ 6 7 6 ? A 6 6 8 7 6 ? 5 6 @ @ 7 6 ? 5 6 @ B 7 6 ? 5 6 @ C 7 6 ? 5 6 @ 9 7 6 ? 5 6 D

EFG
HIJ
KL
MF
NO
PQ
RS

T U V V W X Y Z [\]

^ _ ` a b c ` d e f g b ^ h ` i j k l m h h b n e
o p q r s s t o u q r s s s t v w q x r y s z x { t | } q s y s {

Figure 25.1: Diode voltage drop vs current from equation (25.5), with linear
extensions for negative current below the saturation current Is and high positive
current. The limiting reverse-bias resistance Rr unusually low, and forward-bias
resistance Rf unusually high for clarity.

Vt are properties of the diode. Is is the input Isat. Vt is a constant embedded
in Sage with the effective value 40 mV.

For the case Is < 0 the current approaches Is asymptotically from above for
increasing positive ∆V (reverse-bias) and quickly increases without limit in the
positive direction for negative ∆V . For the case Is > 0 the current approaches Is
asymptotically from below for increasing negative ∆V (reverse-bias) and quickly
decreases without limit in the negative direction for positive ∆V .

The Sage formulation requires voltage drop as a function of current, which
is the inverse of equation (25.4)

∆V =

−Vt ln
(

1 − I
Is

)

if Is < 0

Vt ln
(

1 − I
Is

)

if Is > 0
(25.5)

Figure 25.1 plots this equation for the case Is < 0. According to the Shockley
equation, current never goes below Is, the reverse-bias saturation current. But
for numerical reasons Sage requires a voltage drop value for any current value. So

268 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

for I near Is and below Sage uses the linear approximation ∆V = Vr−(I−Ir)Rr,
continuous and tangent to the Shockley equation at the point (Vr, Ir). The slope
d∆V/dI from equation (25.5) is

d∆V

dI
=

−
(

Vt

Is−I

)

if Is < 0
(

Vt

Is−I

)

if Is > 0
(25.6)

from which it is easy to find Ir by equating −d∆V/dI with the slope Rr (input
Rrev), and Vr from equation (25.5).

Similarly, it is unrealistic for the slope d∆V/dI to approach zero for high
positive currents in the forward bias direction, suggesting there is no internal
resistance. So that there is always a minimum resistance Sage uses the linear
approximation ∆V = Vf − (I − If)Rf , continuous and tangent to the Shockley
equation at the point (Vf , If). If and Vf are solved as before based on equating
−d∆V/dI with the slope Rf (input Rfwd), and Vf from equation (25.5).

25.3.10 Power Probe

TGtEprobe

This components represents a power flow meter. It is functionally equivalent
to a short wire with zero resistance. Use it to monitor voltage, current and,
more importantly, power flow at any point in an electrical circuit. There are no
inputs required.

Other electrical components measure power dissipated within the compo-
nent. This component overrides the FWe output to show the power flowing
through the component, evaluated as a function of time from

We = IV (25.7)

25.3.11 Ideal Transformer

TGtTransformer

Use this component to model an off-the-shelf transformer of adequate current
rating for your application. For actually designing a transformer see the sample
model Transformer.stl installed in a subdirectory of the Sage program directory.
This ideal transformer assumes zero resistance in the windings and zero reluc-
tance in the iron path. It just steps up voltage and steps down current (or
vice-versa) according to the single input:

TurnRatio : (real, dimensionless) Ratio secondary/primary winding turn num-
bers N2/N1.

There are two built-in electrical circuit child components corresponding to the
primary winding and secondary winding, each with the usual electrical-component
outputs. Ideal transformers are born with four current connectors, correspond-
ing to the ends of the primary and secondary windings.

In transformers both coils are wound around a common magnetic flux path.
If subscript 1 denotes the primary winding and 2 the secondary winding then

25.3. SIMPLE ELECTRICAL COMPONENTS 269

Faraday’s law (equation (25.27)) gives the voltage induced in each winding in
terms of the rate of change of linked magnetic flux as

∆V1 = N1
dφ

dt
(25.8)

∆V2 = N2
dφ

dt
(25.9)

With zero wire resistance, ∆V1 and ∆V2 are the actual voltages at the trans-
former terminals. Eliminating the common dφ/dt gives the well known voltage
step-up equation for a transformer

∆V2

∆V1
=
N2

N1
(25.10)

Regarding the magnetic flux, it is related to the magnetic potential difference
around the flux path according the magnetic circuit relationship

φ =
µA

`
∆Ψ (25.11)

where µ is the magnetic permeability, A is the effective magnetic path cross
section area and ` is the length. The magnetic potential difference is produced
by the combined electrical current flows in the two coils according to Ampere’s
law (equation (25.25))

∆Ψ = N1I1 +N2I2 (25.12)

From the previous two equations it follows that

φ =
µA

`
(N1I1 +N2I2) (25.13)

For an ideal transformer the assumption is that µA/` → ∞ while φ remains
finite (according to (25.8) or (25.9), so that

N1I1 +N2I2 = 0 (25.14)

or
I1
I2

= −N2

N1
(25.15)

In other words the currents are opposite and stepped down by the same ratio
that the voltages are stepped up. In an actual transformer N1I1 and N2I2 are
not quite equal and opposite.

In energy flow terms, the above equations imply that

∆V2I2 + ∆V1I1 = 0 (25.16)

There is energy flow through an ideal transformer but no net energy dissipated
within it.

270 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

25.3.12 Solution Method

All simple electrical components share a common computational framework
which may be represented abstractly in terms of a discrete component with
negative facing and positive facing ends to which voltage is applied and through
which current flows, as shown in this diagram:

V– V+

I–
I+Vo

In some components there are two primary solution variables, voltage offset
Vo and voltage drop ∆V = V+ − V− with voltages at the two ends evaluated
explicitly as

V− = Vo − ∆V/2 (25.17)

V+ = Vo + ∆V/2 (25.18)

In other components there is only one primary solution variable Vo, presumed
uniform throughout the component with no need to define ∆V . Electrical cur-
rent I is a secondary variable evaluated as the average of the currents flowing
through the negative and positive ends.

I =
I− + I+

2
(25.19)

Generally, the current is forced to be the same at the two ends (no net charge
accumulation within) so I is the uniform current flowing through the component.
In the case of a capacitor the current includes the so-called displacement current
of the time-varying electric field between the plates.

Current determines voltage offset Generally the condition of uniform cur-
rent (I− = I+) determines the voltage offset Vo implicitly. The exception being
the voltage reference components where the voltage offset is set by inputs and
the current can be different at the two ends.

Component physics determines voltage drop Generally the voltage drop
∆V is evaluated explicitly as a function of current according to the physics for
the particular component (see above for each component class). The exception
being the current source component where ∆V is solved implicitly from the
current input.

Current based on voltage continuity Connections between terminals pro-
vide current I solved implicitly from the condition that the voltage is the same
across the connection. When there are multiple terminal connections at one
or both ends of a component, the voltages are all the same. Each component

25.4. COIL COMPONENTS 271

is responsible for enforcing the requirement that the sum of currents flowing
through the negative boundary equals the sum of currents flowing through the
positive boundary.

Solved by Sage Taken together in the Sage solution framework the implicit
variables identified above suffice for Sage to solve for voltages and currents
everywhere in a circuit comprising any number of simple electrical components
connected together in ways that make physical sense.

25.4 Coil Components

Coil components are electromagnetic components that implement Faraday’s law
of induction and Ampere’s law relating electric current to magnetic field. In a
software sense they descend from the above simple electrical components and
borrow the concept of magnetic potential and magnetic flux connections from
the magnetic components to follow.

Physically, they represent coils of wire consisting of one or more turns wound
on a cylindrical form (not necessarily circular). Each turn is insulated from the
next and an electrical current flow through the wire from one end to the other.

Magnetic effects occurring within the coil core (inside of the cylinder on
which it is wound) are communicated to other magnetic model components
(e.g. ferromagnetic materials) via magnetic flux connections at the ends of
the coil core cylinder — the coil end boundaries. Generally in a Sage model
there will be an external closed-loop magnetic flux path originating at one coil
boundary and terminating at the other. Physically this flux path represents
the ferromagnetic or air path inside the coil core as well as the external path.
The electrical current flowing in the coil winding generates a magnetic potential
difference ∆Ψ between the two ends of the coil core (Ampere’s law). A changing
magnetic flux φ flowing through the coil core as a result of the magnetic flux
connections generates a potential difference in the coil winding (Faraday’s law).
All Coil components share these variables:

Inputs

Dwire : (real, m) Wire diameter dw not including insulation. If the wire cross
section is not circular this should be the effective diameter for a circu-
lar wire with the same area. For example,

√

4/π b for a square wire of
dimension b× b.

Nturns : (real, dimensionless) Number of wire turns in coil N .

Dcentroid : (real, m) Diameter of coil centroid Dc. In the case of a circular coil
of rectangular or circular cross section Dc is the average of the coil inner
and outer diameters. Generally, defined by πDcAc = Vc, where Vc is the
total coil volume and Ac is the coil section area. In other words so that
the coil volume equals the coil area swept over the linear distance πDc.

272 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Alpha : (real, dimensionless) Coil packing factor α, (conductive material volume
/ total volume), a number between 0 and 1. For close-packed circular
wires (centers on vertices of equilateral triangular grid) the packing factor
is π/(2

√
3) ≈ 0.91. For rectangular packing (non-nested annular layers)

the packing factor is π/4 ≈ 0.79. Insulation thickness lowers the packing
factor by the square of the core to insulated diameter ratio.

Tcoil : (real, K) Coil temperature T at which electrical conductivity is evalu-
ated.

LinkMult : (real, dimensionless) An empirical multiplier FL (range 0 to 1) used
to account for any magnetic fringing flux leakage through the coil vol-
ume that subtracts from the flux passing through the inner core. The
effective linked flux (average flux circumscribed by all windings) is taken
as FLφ, where φ is the magnetic flux passing through the magnetic flux
connections. (see discussion below)

Conductor : (selection list) Wire conductor material.

Outputs

Wdissip : (real, W) Coil time average electrical resistance I2R loss.

Rcoil : (real, Ohms) Coil resistance R.

Lcoil : (real, Henries) Coil effective inductance L calculated from voltage drop

∆V and current time derivative İ as L = −
∮

∆V İ
∮

İ2
. For an ideal inductor

this give the correct value as you can see by substituting the defining rela-
tionship −Lİ for ∆V . Essentially in this formulation L is a coefficient in
an orthogonal function expansion with İ the orthogonal function. The in-
terpretation for a coil within a linear-actuator model is more complicated.
The voltage drop will then have a transduction component proportional
to velocity Cf ẋ (see section 25.6.1). If ẋ is not orthogonal to İ (velocity
not in phase with current) then Lcoil will differ from the true inductance
measured when the linear actuator is stationary.

Acoil : (real, m2) Total cross section area Ac of the coil winding normal to
wires. The cross section area into which the coil is wound.

Awire : (real, m2) Wire conductor cross section area Aw not including insula-
tion.

Vcoil : (real, m3) Total volume of the coil winding Vc. The volume of the entire
toroidal envelope with cross section Ac enclosing the coil.

Vwire : (real, m3) Wire conductor total volume Vw. The volume of conductive
material in the winding not including insulation.

Lwire : (real, m) Wire total length Lw .

25.4. COIL COMPONENTS 273

Mwire : (real, kg) Wire mass ρsVw, where ρs is conductive material density.

FVneg : (Fourier series, V) Voltage at left (negative oriented) end of winding
V−.

FVpos : (Fourier series, V) Voltage at right (positive oriented) end of winding
V+.

FDeltaV : (Fourier series, V) Voltage drop ∆V = V+ − V−.

FI : (Fourier series, A) Electrical current in winding.

FW : (Fourier series, W) Electrical power delivered to the winding.

FDeltaPsi : (Fourier series, A) Induced magnetic potential ∆Ψ from Ampere’s
law (25.25).

FBflux : (Fourier series, Wb) Total linked magnetic flux φ through coil core.

FWm : (Fourier series, W) Magnetic power delivered to component −φ̇∆Ψ.

FDeltaVem : (Fourier series, V) Electromagnetic voltage drop. The total voltage
drop ∆V less the resistive component IR. Comprising the inductive com-
ponent −Lİ , related to the rate-of-change of stored electromagnetic energy
with current and, for coils within linear-actuator models, the transductive
component Cf ẋ, related to the rate-of-change of stored electromagnetic
energy with velocity (see section 25.6.1).

25.4.1 Fixed Coil

TGtCoil

A fixed coil is one that does not move relative to the other magnetic components
in the model. It does not consider the forces on the coil generated by the
interaction of the coil magnetic field with an external magnetic field or the
velocity of the coil winding through that magnetic field

Figure 25.2 shows the coil geometry. The input wire diameter dw determines
the conductive material cross section area of a single wire as

Aw =
π

4
d2

w (25.20)

Additional inputs, number of turns N and coil packing factor α determine the
cross section area of the total coil as

Ac =
NAw

α
(25.21)

The final geometric input, centroid diameter Dc determines total coil volume as

Vc = πDcAc (25.22)

The total volume of conductive material in the coil is the total volume multiplied
by the packing factor

Vw = αVc (25.23)

274 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

x

y
z

Ac

Aw

Dc

dw

I
+

H

Figure 25.2: Coil geometry with arrows pointing in the direction of positive co-
ordinate directions and current flow. According to the right-hand rule for mag-
netic fields a positive current produces a positive z-directed (upward)magnetic
field H in the coil core.

The overall wire length is the total conductive material volume divided by the
wire cross section area

Lw =
Vw

Aw
(25.24)

Magnetic Field The current I flowing through the wire and the number of
turns N in the coil winding determine the magnetic potential difference accord-
ing to Ampere’s law

∆Ψ = −NI (25.25)

This is a well-known result that derives from the Maxwell equation relating
current density Jn normal to the coil cross section and the magnetic field H in
integral form:

∫

A

JndA =

∮

H · ds (25.26)

In this case integration surface A on the left side includes the currents of the
individual wires in the coil cross section Ac and the path of integration on the
right side can be any path that includes Ac. In particular it can be axially
upward through the coil inner cylinder then diverting radially to somewhere
outside the coil (where H is negligible) then downward axially, then converging
radially inward to the other end of the coil. Symmetry arguments for the two
radial legs and the arbitrariness of the inner axial leg leads to the conclusion
that the H field is uniform in the axial direction within the coil inside cylinder
and that is the only part that contributes to the loop integral. So the right side
may be written as

∫
H · d` over the length ` of the inner cylinder. But by the

definition of magnetic potential this is just −∆Ψ.

Because of the formulation in terms of magnetic potential difference ∆Ψ
neither the value of the magnetic field H nor length of the coil cylinder ` are
important individually. This explains why the coil axial length is not a required
input variable.

25.4. COIL COMPONENTS 275

Why can’t the path of integration on the right side of the equation (25.26)
include the external magnetic flux path, you ask, leading to a different con-
clusion. The reason is that the magnetic flux path includes its own electrical
currents associated with the magnetic domains of ferromagnetic materials and
these would have to be considered in the bounding surface integral of electrical
current density on the left side.

Induced Voltage The rate of change of magnetic flux dφ/dt through the
coil inner core and the number of turns N determine the zero-current inductive
voltage difference across the coil terminals according to Faraday’s law

∆VL = N
dφ

dt
(25.27)

This is another well-known result that derives from the Maxwell equation relat-
ing the rate of change of magnetic flux density in the coil inner cylinder to the
electrical field E loop tension in integral form:

d

dt

∫

A

BndA = −
∮

E · ds (25.28)

In this case the integration surface A on the left side is the coil inner cylinder
cross section and in terms of the magnetic flux through that cross section is
just dφ/dt. The path of integration on the right side applies to each turn of
the winding separately. When added together for the total number of turns N
the integral on the right amount to the total voltage difference across the coil
terminals ∆V .

Because of the changing magnetic field produced by a time-varying current
via Ampere’s law there is some degree of self induction that tends to counter
the current change by an opposing voltage change. The degree of this self
induction depends on the properties of the magnetic flux path to which the coil
is connected because that determines the size of the magnetic flux variation.

Flux Linkage Multiplier The above account assumes all of the magnetic
flux passes through the coil core and returns by some path entirely outside
the coil volume. This is usually a good approximation to reality because the
magnetic flux is contained within a ferromagnetic material of very high magnetic
permeability compared to the coil or surrounding air. But not always. In
moving-magnet linear motor applications, for example, there is generally a gap
of low magnetic permeability in the ferromagnetic flux path in the vicinity of
the coil. So some fringing magnetic flux may pass through parts of the coil
with the direction of flux opposite to that in the core. To account for this Sage
includes the empirical multiplier input FL (LinkMult) and modifies the induced
voltage calculation of equation (25.27) to

∆VL = FLN
dφ

dt
(25.29)

276 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

to account for the fact that the linked flux is FLφ. In order to conserve energy
it is also necessary to modify the magnetic potential difference calculation of
equation (25.25) to

∆ψ = −FLNI (25.30)

This follows from an energy conservation principle. The electrical energy flow
associated with the induced voltage ∆VL is

dEe

dt
= −∆VLI = −FLN

dφ

dt
I (25.31)

The magnetic energy flow associated with the changing magnetic potential dif-
ference ∆ψ is, according to equation (25.35)

dEm

dt
= H

dB

dt
= −∆ψ

dφ

dt
= FLNI

dφ

dt
(25.32)

so that the changes of electrical and magnetic energy are equal and opposite
and energy is conserved.

Resistance The electrical resistance in the wire creates a separate resistive
voltage drop whenever electrical current I is flowing according to

∆Vr = −IR = −Iσ Lw

Aw
(25.33)

Where σ is the electrical resistivity (Ohm-m).

Total Voltage Difference The total voltage difference across the coil termi-
nals is the sum of the part due to time-varying magnetic flux and the component
due to resistance

∆V = ∆VL + ∆Vr (25.34)

25.5 Magnetic Components

Magnetic components form the basic elements of magnetic circuits. They in-
clude air gaps, permanent magnets and ferromagnetic flux paths. All magnetic
components define a scalar magnetic potential Ψ at each end of the component
and a magnetic flux φ that is a function of the magnetic potential difference ∆Ψ
across the component. The negative potential difference −∆Ψ = Ψ− − Ψ+ is
the so-called magnetomotive force. Magnetic flux φ may be a function of time
but is presumed uniform in space throughout the component. Each component
defines a different functional relation ship φ(∆Ψ) between magnetic flux and
magnetic potential difference. This is equivalent to a functional relationship
B(H) between magnetic flux density and magnetic field strength.

25.5. MAGNETIC COMPONENTS 277

Energy and magnetic fields This manual does not go into the basic theory
of electromagnetism. But it does have an axe to grind about the way that the-
ory is generally presented in terms of Maxwell’s equations involving a magnetic
field and flux H and B. Maxwell’s equations, beautiful though they are, do not
say anything about the physical nature of H and B and what is the difference
between them. It doesn’t help that the two are directly proportional in a vac-
uum. What are the natures of two invisible quantities that are proportional to
each other?

So the Sage manual offers a mental crutch for the abstractly impaired. A
mental picture that comes from taking the definition of magnetic energy as a
fundamental concept along with Maxwell’s equations. By taking as axiomatic
this differential relationship for the change in magnetic energy per unit volume

dEm ≡ H · dB (25.35)

assumed to apply universally in vacuum or in a solid material — no exceptions.
In this form the roles of H and B are seen to be fundamentally different. In
fact they are similar to the roles of force F and displacement dx in the equation
for the work done on a simple mechanical spring

dEs ≡ F · dx (25.36)

By analogy it is clear that H is something like a force and B something like a
displacement. In fact H is the gradient of a magnetic potential much like F is
the gradient of a mechanical potential (spring potential energy). In the case of
B in is not clear exactly what is being displaced from its equilibrium value but
still the idea that B is a displacement provides a useful mental image. Whatever
is being displaced, it is displaced even in a vacuum. So it is some property of
space itself outside our usual sensory perceptions. In these terms the fact that
B and H are proportional in a vacuum may be understood to mean that B is
stretching like a spring in response to an increasing H force.

Conventional terminology that B is a magnetic flux is misleading. It sug-
gests B is something flowing through space rather than a displacement from
an equilibrium value. It would be better to call B the magnetic displacement
and if anything is to be called the magnetic flux it should be the rate of change
dB/dt.

25.5.1 Common Variables

For software design reasons magnetic components are subdivided into a parent
component that manages the solution grid and a child object component with
variables specific to a particular magnetic material.

Magnetic parent components share some common variables although not
all are present, depending on the component:

278 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Inputs

Lpath : (real, m) Magnetic path length `.

Apath : (real, m2) Magnetic path area A.

Outputs

Mmag : (real, kg) Mass of magnetic material.

FPsiNeg : (Fourier series, A) Magnetic potential at negative pole Ψ−.

FPsiPos : (Fourier series, A) Magnetic potential at positive pole Ψ+.

FH : (Fourier series, A/m) Magnetic field H = −∆Ψ/`.

FB : (Fourier series, C) Magnetic flux density B = φ/A.

FWm : (Fourier series, W) Magnetic power delivered to the component.

From magnetic energy formulation (25.35) The instantaneous magnetic power
delivered to a magnetic component of volume v = A` isW =

∫

v HḂdv. In terms
of magnetic flux φ = BA and potential difference −∆Ψ =

∫
Hd` this works out

to W = −φ̇∆Ψ. Output FWm is just the Fourier series representation of W as
a function of time.

Magnetic child objects share these common inputs:

Material : (selection list) The magnetic material selected by name from a list of
ferromagnetic or permanent magnet materials, depending on the compo-
nent.

Tm : (real, K) Material temperature T at which magnetic properties are eval-
uated.

ThkLam : (real, m) Lamination thickness a. To minimize eddy current losses
magnetic materials typically comprise multiple layers or laminations with
the layers parallel to the magnetic field direction (section 25.7.3). If there
are no layers this input is still important because it affects the eddy current
magnetic field and I2R loss, both of which are modeled in Sage. Generally,
it should be set to the minimum dimension of the material when viewed
from the z direction parallel to the magnetic field (see table 25.5.1).

25.5. MAGNETIC COMPONENTS 279

description shape ThkLam

Rectangle with B perpendicular
to section

++ ++B a

L
min(a, L)

Split ring with axial B

+

+ +

+

B a
a

Closed ring with axial B, no mag-
netic flux inside

+

+ +

+

B a
a

Closed ring with axial B, return
magnetic flux inside

+

+ +

+

–

–

–

–
B a

2a

Closed annular ring with radial B

hB

h

Annular ring with radial B, ring
broken into sections

w

h
B

min(h, w)

Table 25.1: Meaning of lamination thickness. For un-laminated magnetic ma-
terials the lamination thickness input ThkLam may be approximated according
to this table.

280 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

25.5.2 Magnetic Connection Block

TGtMblk

A component of zero magnetic reluctance that allows you to connect two or more
magnetic components together. Once connected the magnetic potentials Ψ in
each component adjust so all the connected poles share a common magnetic
potential and the net magnetic flux flowing into the connection block is zero
(∇ · B = 0). This is the magnetic analog of an electronic connection terminal
except in magnetic circuits it is usually impossible to implement a magnetic flux
path with negligible reluctance compared to the other circuit elements. It may
be useful to think of this component as representing a physical contact between
two or more magnetic poles where there is a negligible impedance of magnetic
flux among them.

25.5.3 Magnetic Potential Reference

TGtMref

This component is similar to the above magnetic connection block except you
explicitly set the magnetic potential Ψ. It functions something like a ground
connection in an electrical circuit. In any magnetic circuit the magnetic po-
tential is indeterminate unless you specify the absolute value (usually zero) at
least one point. Otherwise adding an arbitrary constant offset Ψo to all the
magnetic potentials of the circuit would produce an equivalent circuit (same
magnetic potential drops and magnetic fluxes). Generally you will connect a
magnetic potential reference to one point of a magnetic circuit using a upward
or downward facing pole. In principle it is possible to ground a magnetic circuit
at more than one point using different potentials although there is a more phys-
ical way to do that using a permanent magnet component.The one additional
input compared to the inputs listed above is:

FPsi : (Fourier series, A) Magnetic potential offset Ψo.

Magnetic potential references are the only magnetic components where the
net magnetic flux flowing into the component can be non-zero.

25.5.4 Magnetic Field Source

TGtHsrc

This component specifies the magnetic field magnitudeH between two poles of a
magnetic circuit as an input. It produces a magnetic potential difference ∆Ψ =
−H`, where ` is the magnetic path length (Lpath). The magnetic potentials
and fluxes in the rest of the circuit respond accordingly.

In effect it models a coil (section 25.4) with zero magnetic reluctance where
the current is automatically adjusted to produce the required magnetic field.
You might use this component to approximate such a coil or to provide boundary
conditions to evaluate other magnetic circuit elements.

Additional inputs compared to the variables listed above are:

FH : (Fourier series, A/m) Fixed magnetic field H overriding above dependent
variable.

25.5. MAGNETIC COMPONENTS 281

25.5.5 Magnetic Flux Source

TGtBsrc

This components is similar to the above magnetic field source except the roles
of B and H are reversed. It specifies the magnetic flux density B between two
poles of a magnetic circuit as an input. It supplies whatever magnetic potential
drop is necessary to produce the required flux density. The magnetic potentials
and fluxes in the rest of the circuit respond accordingly.

Additional inputs compared to the variables listed above are:

FB : (Fourier series, V) Fixed magnetic flux density B overriding above depen-
dent variable.

25.5.6 Air Gap

TGtAirGap

This component represents simple magnetic air gap with gap length and area
inputs Lpath and Apath (above). It forces a relationship between magnetic flux
φ and magnetic potential drop ∆Ψ equivalent to the vacuum relationship

B = µ0H (25.37)

Where µ0 = 4π10−7 (H/m) is the permeability of free space.
The term air gap is traditional based on common usage in Earth’s atmo-

sphere and has nothing to do with the actual gas that may be in the gap. It
would be more accurate to call this component an empty gap.

25.5.7 Permanent Magnet

TGtPermMag

This component provides a magnetic flux φ as a function of magnetic potential
difference ∆Ψ according to a fixed demagnetization curve B(H) = µ0H +J(H)
as described in section 25.7.2. In addition to Material and Tm listed above a
permanent magnet has these inputs:

Jmult : (real, dimensionless) Scale factor used to change the direction or mag-
nitude of magnetic polarization J(H). A value +1 corresponds to a north
pole at the positive end. A value −1 to a south pole at the positive end.
Other values may be used to effectively weakening or strengthening the
magnet relative to the Material data.

DemagLimit : (real, dimensionless) The external magnetic field beyond which
significant demagnetization occurs, expressed as a fraction of HcB. The
default value is 1. Sage will warn you if the external field exceeds this
value, otherwise it has no effect on the solution.

And adds this output:

FUtilization : (Fourier series, dimensionless) Utilization factor defined as the
BH energy product along the demagnetization curve as a fraction of the
maximum value. Small values for the time-mean and harmonic amplitudes
suggest the magnet may be too large or too small. See section 25.7.2

282 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

No Hysteresis In solutions with time varying H permanent magnets do not
traverse any minor hysteresis loops when traversing back and forth along de-
magnetization curve. This is a reasonable approximation to reality provided
the external magnetic field is well below the coercive force limit HcJ . It also
avoids the problem of solution transients demagnetizing the magnet and leading
to an unexpected solution — possibly multiple solutions depending on initial
conditions and the path to the solution. In other words permanent magnets are
really permanent in Sage.

But this is not always a good thing. If you impose a high demagnetizing
field on a permanent magnet in Sage it will always recover its magnetization
when the field returns to a low value. A real magnet on the other hand may be
permanently demagnetized and never recover. Therefore the inputs for a perma-
nent magnet include the value DemagLimit, the relative fraction of the coercive
force HcB above which the magnet undergoes significant demagnetization. The
default value is 1. The Sage solver will warn you whenever |H |/HcB exceeds
DemagLimit. If this warning occurs during the solution process as a result of
transient values then you can probably ignore it. If it occurs on re-opening a
model in the solved state and HcB and DemagLimit are set correctly then you
ignore it at your peril.

25.5.8 Soft Ferromagnetic Material

TGtSoftMag

Soft ferromagnetic materials are generally used to conduct a cyclically reversing
magnetic flux with as little material as possible. So peak flux densities are gen-
erally high (near saturation). Compared to a permanent magnet the coercive
force required to change the direction of magnetization is relatively low. But
still there is some coercive force required, which produces an energy dissipating
hysteresis loop B(H) as the H field varies back and forth. Sage captures this
energy dissipation by solving the Magnetization M(H) as a function of both H
and dH/dt formulated in terms of the magnetic properties usually available for
soft iron materials. To help you keep an eye out for saturation a soft ferromag-
netic material adds this output:

FJ : (Fourier series, T) Magnetic polarization J = µ0M .

The output is magnetic polarization rather than magnetization because the
saturation value Js is more commonly available in material property tables
than Ms and it is also a number on the order of 1 rather than 106 (in SI units).

Pseudo-Hysteresis Formulation Since magnetization M depends on the
previous history as well as the current magnetic state it should, in principle,
be solved as a differential equation (see section 25.7.1). One of the false starts
of Sage development was to actually solve M as a differential equation but it
was soon apparent that doing so led to unacceptable numerical errors in Sage’s
coarse time grid and also convergence problems. So instead of that, Sage solves
M using a simplified formulation motivated by the observation that all minor

25.5. MAGNETIC COMPONENTS 283

hysteresis loops fall between the two limiting curves of the outer hysteresis loop,
produced by driving the magnetization to saturation in one direction then the
other. Referring to figure 25.11 in section 25.7.1, the two limiting magnetization
curves are roughly separated horizontally from each other by the distance 2Hc,
where Hc is the coercive force (M = 0 intercept. In other words, the dH > 0
branch is approximately Ma(H −Hc) and the dH < 0 branch Ma(H +Hc). In
particular Sage formulates a shift value Hs that varies smoothly between ±Hc

Hs =

{
dH
dτ

Hc

H1
if H1 > Hc

dH
dτ otherwise

(25.38)

where H1 is the amplitude of the H and τ = ωt is the dimensionless cycle
angle. The formulation is based on the observation that for sinusoidally varying
quantities the value dH/dτ takes its extreme values 90 degrees out of phase
with the extreme values of H . Since the amplitude of dH/dτ is also H1, the
first branch amounts to a sinusoidal function with amplitude Hc. The second
branch applies to low amplitude H solutions and scales down the shift Hs in
proportion to the H amplitude. To deal with the possibility of non-sinusoidal
H the value Hs is truncated to lie within the limits ±Hc.

Sage estimates the amplitude H1 using local solution information using a
formulation that is valid provided the variation of H is sinusoidal or nearly so
but reasonable in any case.

H1 ≈
√
(
dH

dτ

)2

+

(
d2H

dτ2

)2

(25.39)

This may make more sense if you think of dH/dτ = H1 sin τ and d2H/dτ2 =
H1 cos τ .

The value of M is then defined implicitly as

M = Ma(xs) (25.40)

where Ma is the function (25.96) and xs is the shifted dimensionless magnetic
field

xs =
H −Hs + αM

αMs
(25.41)

Hysteresis loops for this pseudo-hysteresis approximation are illustrated in figure
(25.11) of section 25.7.1 for the case of purely sinusoidal H variation. For
large H amplitudes (M near saturation) the pseudo-hysteresis loops appear
quite reasonable compared to those calculated with the hysteresis differential
equation. For small H amplitudes the differences are more noticeable with the
hysteresis loss is somewhat overestimated — the price for reliable convergence.

25.5.9 Non Magnetic Material

TGtNonMag

This component models the magnetic flux path within a non-magnetic electri-
cally conductive material. It has the same free-space magnetic permeability as

284 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

an air gap, µ0 = 4π10−7 (H/m). But unlike an air gap it models eddy current
losses according to the formulation of section 25.7.3. Any time-varying magnetic
flux generates an opposing magnetic field, depending on material electrical con-
ductivity and effective lamination thickness (ThkLam input).

The reason for this component is that some electro-magnetic devices impose
a pressure wall between internal and external parts of the magnetic flux path.
For example, a linear motor design may locate the coil outside a pressure wall
to minimize internal volume, avoid contamination issues and avoid the need
for wire feedthroughs. Often this pressure wall must be a metal (electrically
conductive) for strength purposes.

If you want to model a pressure wall made from a ferromagnetic material
use the Soft Ferromagnetic Material component instead. That component also
models eddy current losses but also includes the increased magnetic permeability
of a ferromagnetic material and magnetic hysteresis.

For the present component the selection list for the Material input comes
from the electrical materials data file. For the Soft Ferromagnetic Material
component it comes from the soft ferromagnetic materials data file (see chapter
28).

25.5.10 Solution Method

All magnetic components share a common computational framework based on a
lumped magnetic circuit approach. A magnetic component may be represented
abstractly in terms of a solid of length ` and cross section area A with uniform
magnetic potentials Ψ+ and Ψ− on the upward and downward facing ends. The
potential difference drives a uniform magnetic flux φ through the component,
as shown in this diagram:

Y+

Y–

f

l

A
x

y
z

Potential difference ∆Ψ and magnetic flux φ may vary with time.

The magnetic field within the component is presumed uniform (only a func-
tion of time) and broken into two parts, H+Heddy , where H is the net magnetic
field that determines the magnetic flux and magnetization and Heddy is the op-
posing field due to eddy currents (see section 25.7.3 for details). The magnetic
flux and potential difference are related to the magnetic fields H , Heddy and
magnetic flux density B through these defining equations:

B = φ/A k̂ (25.42)

25.5. MAGNETIC COMPONENTS 285

− ∆Ψ =

∫

(H + Heddy) · d` = (H +Heddy)` (25.43)

where k̂ is the unit vector in along the component z axis. So the net scalar
magnetic field is

H = −∆Ψ/`−Heddy (25.44)

Implementation Details

In some components both magnetic potential offset Ψo and potential drop ∆Ψ =
Ψ+ − Ψ− are solved in the computational grid with the magnetic potentials at
the two ends evaluated explicitly as

Ψ− = Ψo − ∆Ψ/2 (25.45)

Ψ+ = Ψo + ∆Ψ/2 (25.46)

In other components only Ψo is solved, presuming ∆Ψ = 0. Magnetic flux φ is
evaluated explicitly as the average of the magnetic fluxes flowing through the
negative and positive ends.

φ =
φ− + φ+

2
(25.47)

Generally, the magnetic flux is forced to be the same at the two ends (∇·B = 0)
so φ is the uniform magnetic flux flowing through the component.

Magnetic flux determines magnetic potential offset Generally the con-
dition of uniform magnetic flux (φ− = φ+) determines the magnetic potential
offset Ψo implicitly. The exception being the magnetic potential reference com-
ponents where the Magnetic potential offset is set by inputs and the magnetic
flux can be different at the two ends.

Component physics determines magnetic potential drop The mag-
netic potential drop ∆Ψ is evaluated implicitly as a function of magnetic flux φ
according to the physics for the particular component.

The objective is to adjust ∆Ψ so that φ(∆Ψ) demanded by the physics
equals the actual value of φ. Except for most components it is more convenient
to formulate the relationship B(H) rather than the relationship φ(∆Ψ), the
equivalence between the two being

φ(∆Ψ) ≡ A B(−∆Ψ/` −Heddy) (25.48)

Magnetic flux based on Magnetic potential continuity Connections be-
tween poles provide magnetic flux φ solved implicitly from the condition that the
magnetic potential is the same across the connection. When there are multiple
pole connections at one or both ends of a component, the magnetic potentials
are all the same. Each component is responsible for enforcing the requirement
that the sum of magnetic fluxes flowing through the negative boundary equals
the sum of magnetic fluxes flowing through the positive boundary.

286 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Solved by Sage Taken together in the Sage solution framework the implicit
variables identified above suffice for Sage to solve for magnetic potentials and
magnetic fluxes everywhere in a circuit comprising any number of magnetic
components connected together in ways that make physical sense.

Validity of Scalar Potential with Eddy Currents

Technically the validity of a scalar potential formulation depends on the path-
independence of

∫
(H + Heddy) · ds between any two points in the magnetic

solid, or equivalently
∮
(H + Heddy) · ds = 0 for any closed path. For the net

field H this is the case because, by definition, H is the field that would be
present in the absence of eddy currents and only electrical currents can disrupt
the path independence of

∮
H · ds.1 But this is not the case for the eddy field

Heddy. According to section 25.7.3 it varies from zero at the outer surface of the
magnetic material to maximum at the center. But it is the case for the section
average of Heddy (averaged in any x-y plane), which is what is important for
a lumped parameter analysis. So there is really no difference between the eddy
field Heddy and the net magnetic field H when it comes to representation by a
scalar magnetic potential. Both vary locally within the magnetic component and
the only assumption is that the scalar magnetic potential difference between the
component z ends represents the integral of the section averages of H + Heddy

along the z axis.

25.6 Linear Motors, Alternators, Actuators

Electromagnetic transduction components model the conversion of electrical
power to mechanical power or vice-versa via the interaction of components like
permanent magnets or coils moving through an air gap between magnetic pole
pieces.

25.6.1 Simple Transducer

TXducer

But first there is a simple transducer component that functions as a bridge be-
tween the electrically-challenged linear motors of section 29.3.12 and the compo-
nents below that model detailed electromagnetic physics. A transducer compo-
nent is born with electrical current and force connectors for connecting to other
components of your model. There is only a time-ring version. It is a relative
moving part, which means that each end (xneg and xpos) should be connected
to a different moving part, one of which may be stationary.

A simple transducer throws to the dogs any electromagnetic physics that
might be behind the conversion of electrical current to mechanical force and

1According to Maxwell’s equations the integral
∮

H · ds around a closed path equals the

integral
∫

Cndσ over any surface bounded by that path, where Cn is the electrical current
flow normal to surface element dσ.

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 287

instead simply assumes a linear relationship between the two

F = CfI (25.49)

The only physics this component implements is to produce a voltage drop across
its electrical terminals according to an energy conservation principle — namely,
that the mechanical power input equals the electrical power output:

F
dx

dt
= ∆V I (25.50)

Solving for ∆V and using the definition of Cf , the energy conservation principle
implies that the voltage drop across the transducer terminals must be

∆V = Cf
dx

dt
(25.51)

This voltage drop is an output of the transduction voltage child component
built into the linear transducer component. Resistive, inductive and capacitive
circuit elements are not included. They are to be implemented as separate
circuit elements connected to this component by current connections.

The force given by equation (25.50) acts on the moving part attached to
endpoint coordinate xpos and the negative of that force on the moving part
attached to xneg. The x in velocity dx/dt refers to the relative position xpos −
xneg. Whether a transducer functions as a motor or alternator depends on the
relative phase between current I and relative velocity dx/dt and also the sign
of Cf . If Cf is positive and I and dx/dt are in phase within 90 degrees then
the mechanical power output is positive, otherwise it is negative.

The force or transduction coefficient Cf is a quadratic function of position
according to the inputs:

Cf0 : (real, N/A) Force or transduction coefficient Cf0 at x = 0.

Xm : (real, m) Reference extension xm.

Rp : (real, dimensionless) Force-coefficient ratio Rp = Cf/Cf0 at x = xm.

Rn : (real, dimensionless) Force-coefficient ratio Rn = Cf/Cf0 at x = −xm.

These are the same as for the relative linear motor component of section 29.3.12,
which this component replaces. If you already know something about the physics
behind the transducer you are modeling you may be able to read Cf0, Xm, Rp,
Rn more-or-less directly, from a plot of Cf vs x generated either experimentally
or computationally, or more precisely from a best-fit parabola to the function
Cf(x) over the intended operating range.

The force produced by the motor is still the product of force coefficient and
current, as in equation (25.49), but now Cf is the quadratic function of position

Cf(x) = Cf0

[
1 + a(x/xm) + b(x/xm)2

]
(25.52)

288 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

where coefficients a and b are formulated in terms of inputs as

a = (Rp −Rn)/2 (25.53)

b = (Rp +Rn)/2 − 1 (25.54)

This component will drive any attached reciprocating masses according to the
force-coefficient inputs and electrical current flow. It is important that the
components a transducer is connected to be capable of determining an absolute
mean position (e.g. a constrained piston or connect to a spring to ground).
Otherwise the solver will tend to drift around without converging.

25.6.2 Interpolated Transducer

TXducerCfX

The simple transducer component has proven useful over the years so Sage
version 13 has added a descendant where the relationship for the force-coefficient
Cf (x) is more general. It is interpolated directly from a cubic-spline input:

Cfx : (cubic spline, N/A) A set of data pairs (xi, Cfi), where xi is a position
relative to the transducer zero position in meters (or other units selected
in the model-class options dialog) and Cf i is the force coefficient at that
position. The xi values must be listed in increasing order from the largest
negative position expected during operation at the top to the largest pos-
itive position at the bottom. The number of data pairs is arbitrary and
will depend on the complexity of the variation of Cf with position. The
input dialog for specifying the (xi, Cf i) pairs has a View Interpolation
button you can click to see the smooth curve resulting from cubic spline
interpolation. It is possible to paste values from a spreadsheet directly
into the pairs input dialog.

This component shares the same output variables as its ancestor linear-transducer
component. It deprecates the Cf0, Xm, Rp and Rn inputs because of the new
formulation.

It is up to you to specify Cfx according to measurements of your particular
linear motor or alternator. If the Cf(x) data is too nonlinear or spiky you should
increase the value of NTnode in the root model (number of time nodes) in order
to ensure that the computational grid can actually resolve the Cf(x) curve. You
can gauge this by plotting the connector force or transduction voltage vs time
curves in the resulting model solution. The voltage waveform is available in the
built-in transduction-voltage subcomponent.

There is still linear relationship between Cf and electrical current accord-
ing to equation (25.49). This means that there will be energy conservation in
the conversion between mechanical and electrical power according to equation
(25.50), even though there may still be some degree of numerical error in both.
Numerical error will depend on the number of time nodes so it is a good idea
to compare model solutions for increasing NTnode values. Generally speaking
the size of numerical errors should decrease with increasing time nodes.

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 289

25.6.3 Magnetic Gaps

TGtSPGap

TGtLturnGap

TGtRturnGap

TGtTPGap

These components represent the air gap between magnetic pole pieces. Even
though the pole geometry is depicted as rectangular, these components can
model concentric cylindrical pole geometries that are typically found in linear
motors or generators. The magnetic potential on each pole face is assumed
uniform along the length and width (x and y) dimensions but variable with
time. The magnetic flux emerging from or entering the upper and lower z faces
of the poles may be connected to other magnetic model components via built-in
magnetic flux connectors.

A single-pole magnetic gap (top icon in margin) represents a single opposed
pair of parallel rectangular magnetic pole faces of length L (x-direction), width
W (y-direction) and separated by a gap gz (z-direction) through which magnetic
flux flows. The left-turned and right-turned magnetic gaps (second and third
icons in margin) are sub-types of single-pole gaps. They are intended for use
with moving voice coils and deal with the special physics where the magnetic
flux path of the inner (lower) pole first turns toward the left or right (x direction)
for the coil extend before turning again to the z direction.

A two-pole magnetic gap (bottom icon in margin) represents two pairs of
such pole faces separated in the x direction by a gap gx. (See figure 25.3).

The same set of input variables serves for all magnetic gap components:

Zgap : (real, m) Total z-directed air gap gz.

Wpole : (real, m) Common pole width W , or circumference in a cylindrical
arrangement. In that case Wpole should be set to the effective pole cir-
cumference that gives the correct air-gap volume. For example, if the inner
and outer pole faces are located on circles of diameters Din and Din +2gz

respectively then the effective pole circumference is the mid-circle circum-
ference W = π(Din + gz).

FringeMult : (real, dimensionless) An empirical multiplier used to scale the
fringing flux outside the gap as a means to calibrate models. The 1-D
Sage model employs an idealized calculation of the fringing flux based
on the similarity of an electric field outside a parallel-plate capacitor (see
section 25.6.8). Depending on the actual magnetic gap you are modeling
the fringing flux may be more or less than that. The modeled fringing
flux scales directly with FringeMult. It is still calculated from the idealized
formulation but for an effective gap equal to FringeMult times the actual
gap.

Lpole1 : (real, m) Pole 1 length L1.

Xgap : (real, m) x-directed separation gx between poles 1 and 2.

Lpole2 : (real, m) Pole 2 length L2.

In the case of the two-pole magnetic gap the flux leakage between poles 1 and 2
across the gap gx is presumed negligible, consistent with good design practices.

290 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

pole pair 1

W

pole pair 2
x

y
z

L1 L2
gx

gz

Figure 25.3: Two-pole magnetic gap geometry. The model assumes spatially-
uniform, time-varying magnetic potentials on the inner faces of each pole and a
z-directed magnetic flux between the poles that may vary with both x position
and time.

But there is nothing in the software to prevent you from specifying a gap that
is in fact too small.

Air Gap Physics Magnetic gaps defer most of the electromagnetic physics to
a built-in container and its components as discussed below. But they do handle
the physics for that part of the pole area not covered by the built-in container
at any particular time. For this they use the same principles as the magnetic
air gap discussed in section 25.5 based on the vacuum relationship between
magnetic flux and potential of equation (25.37). See section 25.6.8 below for
more discussion on this topic. In addition, the left-turned and right-turned gaps
also deal with the variation of magnetic potential in the x direction induced by
voice coils. See section 25.6.6.

There are two outputs associated with the poles of magnetic gaps. They are
available within the pole pair child component(s) built into every magnetic gap
component:

FBfluxAir : (Fourier series, Wb) Magnetic flux flowing through the part of the
magnetic gap not covered by the moving electromagnetic container, if any,
as a function of time. The uncovered part of the magnetic gap may be
on one or both sides of the moving container or neither, depending on the
container length and offset.

FWm : (Fourier series, W) Magnetic power inflow into the total magnetic gap
calculated as −φ̇∆Ψ, where φ is the total pole magnetic flux and ∆Ψ is
the potential difference.

In the absence of a moving container the time-average magnetic power inflow
would be zero because there are no energy dissipating mechanisms in an air
gap (φ and ∆Ψ are proportional). But with a moving container present, the
magnetic energy flows to the components embedded in the container produce
power flows at the poles. The magnetic energy flows to the components em-
bedded in the container go to energy dissipations (hysteresis and eddy-current),

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 291

mechanical power flows and in the case of coils electrical energy inputs and
dissipations.

For pole in left or right-turned magnetic gaps there is a third output:

FWmLinked : (Fourier series, W) Magnetic power inflow linked to the embedded
voice coil or coils.

As illustrated in figure 25.5 a voice coil produces a magnetic potential difference
in the uncovered region of the air gap between the moving container end and
pole end. The magnetic flux in this region is linked through the coil because
of the way the inner pole is presumed to turn the flux. So the magnetic power
inflow to this uncovered region must be included in the total power inflow to
the coil or coils embedded in the container. Therefore output FWmLinked must
be included when calculating the overall energy balance within a left or right-
turned magnetic gap.

25.6.4 Moving Electromagnetic Container

TEMovCon-
tainer

This component is found in every magnetic gap component as a built-in child
component. Its purpose is to house and manage a series arrangement of one
or more moving electromagnetic components that move along together in the x
direction. For example: a coil, a moving magnet polarized in the z direction or
a stack of several such magnets polarized in opposite directions as is sometimes
used to modulate force versus position characteristics.

The container component defines the overall length (x-direction) of the inter-
nal component stackup and descends from the relative moving part component
(section 16.8) with built-in connectors at each end. The force connector at the
positive end is logically associated with the moving container and the force con-
nection at the negative end with the outer pole pieces. The idea is that by
connecting these connectors to other moving parts of your model you can sim-
ulate the relative motion of the electromagnetic container. Normally the pole
pieces are fixed and the container moving but depending on how you configure
your model it can be the other way around or both can be moving. Because of
this flexibility the container component provides only the electromagnetic force
between the inner container and outer poles leaving any inertial forces to be
calculated by reciprocating mass components to which the force connectors are
connected. In addition to the variables inherited from the relative moving part
ancestor component moving electromagnetic containers have these variables:

Length : (real, m) Container length.

Offset : (real, m) x-directed offset of the container at its rest position. Variable
xo in figure 25.8.

Mass : (real, kg) Total mass of all electromagnetic components inside the con-
tainer. An output variable.

292 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

EfluxErr : (real, W) Magnetic energy leak, an output variable. The discrepancy
between the power flow into the pole gaps and the power dissipated in the
moving electromagnetic container. A value of zero corresponds to perfect
energy conservation. Replaces former Fscale output (see discussion in the
Energy Leakage paragraph of section 25.6.8).

25.6.5 Moving Electromagnetic Components

All moving electromagnetic components are implemented in terms of a wrapper
component that manages a space-time (x, t) solution grid with magnetic flux
distribution variables φx+ and φx− (see figure 25.10). This wrapper component
defines common inputs pertaining to the component grid, z-thickness, position
relative to the parent container and also a few common outputs. These common
inputs and outputs are:

NCell : (dimensionless) The number of spatial cells in the computational grid.
The higher the number the more accurate will be the magnetic flux dis-
tributions φx+ and φx− between the outer poles and the electromagnetic
component as it moves between the poles.

XnegRel : (real, dimensionless) The dimensionless x position of the component
negative endpoint relative to the parent container. A number between 0
and 1, with 0 corresponding to the container negative endpoint and 1 to
the container positive endpoint. The default value is 0.

XposRel : (real, dimensionless) Like XnegRel except for the component positive
endpoint relative to the parent container. The default value is 1. (see
below)

ZthkRel : (real, dimensionless) Component thickness as a fraction of the z-
directed air gap gz between the outer poles. A number between 0 and 1.
The default value is 1. A number less than 1 corresponds to a sub-gap
∆Z between the outer poles and component on each side (see figure 25.9)
with ∆Z = (1 - ZthkRel) gz/2.

Length : (real, m) Dimensional component length L. An output calculated from
inputs XnegRel, XposRel and the parent container length.

FFm : (Fourier series, N) Magnetic force acting on the component.

FBflux : (Fourier series, Wb) Spatial average magnetic flux through the moving
component,

∫

dx
φx, where φx is the component magnetic flux distribution.

Important When the container has more than one electromagnetic compo-
nent the first must have the value XnegRel = 0 and the last XposRel = 1.
subsequent components must have XnegRel equal to XposRel for the preceding
component. In other words the container components must completely fill the
container with no gaps or overlaps. Sage makes this assumption when allocating

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 293

the magnetic flux between the outer poles not covered by the moving container.
If there is a gap then magnetic flux will be zero in that gap making it a mag-
netic insulator in effect with zero permeability, lower than the permeability of
a vacuum. If there is an overlap then both components will see the same mag-
netic potential difference in the overlap as if they were connected in a parallel
magnetic circuit instead of in series.

Embedded Objects The actual moving electromagnetic component embed-
ded within the wrapper is implemented as a separate built-in child component
with its own inputs, outputs and physics. For example, the coil objects in the
moving coil components below. Such embedded components and their governing
physical principles is the main topic of discussion in the following sections.

Generally speaking, moving electromagnetic components are similar to their
stationary counterparts except the physics is refined to include a spatial distri-
bution of magnetic flux density B depending on where a point x in the grid
finds itself relative to the outer magnetic pole potentials. The quantity BW
symbolized by φx is the magnetic flux per unit length (Wb/m). The total flux
passing through the moving component is just φ = BWL = φxL.

Warning about pole spacing Even though the magnetic flux density may
vary in the x direction, the flux direction itself is always presumed in the z di-
rection (across the magnetic gap). This approximation is always reasonable for
single-pole magnetic gaps but for multiple pole gaps there can be an issue in the
region between one pole and the next, or near, if the pole-to-pole potential gra-
dient (in the x direction) is not small compared to across-gap potential gradient
(in the z direction). This can happen if the pole-to-pole spacing is smaller than
the magnetic gap or the pole-to-pole potential difference larger than the across-
gap potential difference. In that case the accuracy of the Sage solution will
suffer. The problem is worse for coils or soft ferromagnetic materials where the
magnetic flux direction is always proportional to the magnetic field direction.
For permanent magnets — especially rare-earth magnets — it is less of an issue
because the magnetic flux direction is mainly determined by the magnetization
direction, which is locked into the material during fabrication.

25.6.6 Moving Coils

Moving coils implement the physics of non-moving coils discussed in section
25.4 except in the context of the flux distribution and coil orientation within
the parent magnetic gap and including the mechanical force on the coil produced
by the interaction with the magnetic flux. The inputs and outputs basically the
same except for changes imposed by the magnetic gap geometry.

Transverse Coil

TCoilEMov

This component represents a rectangular coil of dimensions L × W moving
between magnetic pole faces as illustrated in figure 25.4. The coil moves in

294 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Fa

Fb

x

y
z

I
+

B

L

W

hC

x=a x=a+c x=b-c x=b

Figure 25.4: Rectangular coil normal to z-directed magnetic field. Positive
current and coordinates in the direction of the arrows produce opposed forces
Fa and Fb on the legs at a < x < a + c and b − c < x < b. A variation of
magnetic B field in the x direction produces a net x-directed force on the coil.

the x direction, parallel to the magnetic pole faces and perpendicular to the
z-directed magnetic field between the poles. This arrangement is used for hard-
drive head-positioning actuators but unlike the typical voice-coil orientation in
a loudspeaker where the coil axis is parallel to the direction of motion and the
pole faces.

The side legs of the coil (parallel to the direction of motion) do not interact
with the magnetic field so they are presumed to lie outside the pole gap. All the
magnetic field interaction is produced by the two legs normal to the direction
of motion.

Sage calculates the coil volume Vcoil according to the presumed rectangular
geometry of figure 25.4 assuming the coil side legs (parallel to x direction) lie
just outside poles:

Vc = 2Ac(W + L − 2c) + πc2hc (25.55)

The number of turns in the coil (Nturns) remains an independent input, however
there is a new output:

FillFac : (real, dimensionless) The fraction of coil length filled by the cross legs
2c/L.

Cross leg x extent c is just the coil cross section area divided by the coil height
Ac/hc. The coil height hc is a specified fraction of the parent magnetic gap
(input ZthkRel). The Sage interface raises an exception whenever FillFac exceeds
1, indicating the coil cross legs overfill the available volume.

Magnetic Field The electrical current flowing through the coil produces a
z-directed magnetic potential difference ∆Ψc according to Ampere’s law (25.25)
of section 25.4. But unlike a non-moving coil, the total potential difference ∆Ψ
now includes the potential drop due to magnetic flux across the coil air gap
∆Ψa = −Bhc/µ0. So ∆Ψ = ∆Ψc + ∆Ψa.

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 295

The potential difference also varies as a function of x. It has the full value
of equation (25.25) only when x lies completely within the coil. Otherwise the
magnetic potential

∮
H · ds varies with the number of coil turns n(x) enclosed

by the integration path, which ranges from zero at the outer winding of the coil
to N at the inner winding.

∆Ψc(x) = −n(x)I (25.56)

The assumption is that n(x) varies linearly so that ∆Ψc(x) also varies linearly
from zero at the outer winding to the full value at the inner winding.

Induced Voltage The rate of change of magnetic flux dφ/dt linked through
the coil core induces a voltage difference across the coil terminals according to
Faraday’s law (25.27) of section 25.4. Except now the total linked flux φ is the
integral of a flux distribution

∫
φxdx over the distance x between windings. The

linked flux varies from the extreme outer winding to the extreme inner winding.
The average value determines the total coil voltage drop.

Magnetic Force Something new for a moving coil is the magnetic force be-
tween the coil and outer magnetic poles. Referring to figure 25.4 the net x-
directed force on the coil is the difference between the forces Fa and Fb acting
on the legs at x = a and x = b. The force arises as the summation of Lorentz
forces acting on individual charge carriers moving through the coil wires.

If the magnetic flux density B were uniform throughout the coil there would
be no net force because the forces on opposite legs would exactly cancel. But if
B varies in the x direction there is a net force in the x direction produced by
the coil legs normal to the x direction. In general the differential force on any
wire segment of length ds is

dF = ds(I × B) (25.57)

where I is the current vector in the coil reference frame2. For those familiar
with screw threads, the force direction is the direction of advance of a right-
hand screw normal to the plane containing I and B rotating in the direction
from I to B. Under the assumption that I and B are always aligned with the
coordinate directions, then only the magnitudes I and B matter with positive
values corresponding to the directions drawn. With B a function of x and t

2In the coil reference frame the current flow I is the number of charges per unit length of
wire drifting with velocity ud in the wire direction, which is actually quite small for typical
currents. What affect does the coil velocity have on the magnetic force? In the pole reference
frame the charges are moving with velocity ud plus the velocity of the moving wire uc. But
in this frame both negative and positive charges are moving and the magnetic forces on the
positive charges due to the uc velocity component cancel the magnetic forces on the negative
charges. Even if the wire is not exactly electrically neutral the net excess charge one way or
the other is small compared to the total number of charge carriers. Besides, whatever net
force due to uc there may be is of no concern because it is always directed perpendicular to
the direction of coil motion.

296 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

coil center axis

x

H . sd

Figure 25.5: Left-directed voice coil cross section showing how the number of
turns in the coil inducing a magnetic potential difference

∮
H · ds varies with

the position x where the path intersects the coil.

only the total x-directed force on a single winding of the coil crossing the gap
at a+ x and b− x is simply

Fw = I

(∫

b−x

Bds−
∫

a+x

Bds

)

= IW [B]
b−x
a+x = I [φx]

b−x
a+x (25.58)

where φx is just BW . Assuming there are N windings (turns) in the coil ex-
tending across the magnetic gap from a to a + c on one end and b− c to b on
the other the total force on the coil is

F = NI
(

〈φx〉bb−c − 〈φx〉a+c
a

)

(25.59)

where 〈φx〉x2

x1
denotes the average flux distribution between x1 and x2. This

equation is fine but for reasons that will be clear later it is possible to write it
in a form that does not directly involve the electrical current by replacing NI
with the magnetic potential difference generated by the coil −∆Ψc. The result
after also replacing φx with WB is

F = −W∆Ψc

(

〈B〉bb−c − 〈B〉a+c
a

)

(25.60)

Voice Coils

TLcoilEMov

TRcoilEMov

These components represent circular coils moving in the direction of the coil
axis in the typical arrangement used for loudspeaker voice coils. The lower pole
corresponds to the inner cylindrical pole piece. The magnetic flux turns axially
within the inner pole toward either left (negative x-direction) or right (positive
x-direction) flux-path components to complete the external magnetic circuit.
Hence there are two orientations of this component, depending on which side of
the inner pole connects to the external magnetic path. Each exists only within
a special magnetic gap parent, either a left-turned or right-turned magnetic gap.

Sage calculates the coil volume Vcoil assuming pole width W represents the
coil centroid circumference and the coil thickness hc is a specified fraction of the
parent magnetic gap (ZthkRel).

Vc = L
π

4

[

(W/π + hc)
2 − (W/π − hc)

2
]

(25.61)

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 297

fx

x

z
coil center axis

x=b

I F

Figure 25.6: Left-directed voice coil cross section showing how the magnetic flux
linked through the coil core varies with position due to the continuous upward
diversion into the air gap. A positive z-directed magnetic flux distribution φx

produces a negative x-directed force F on the coil for an electrical current I in
the direction drawn.

The coil cross-section area Ac (normal to wires) is simply

Ac = Lhc (25.62)

Since the coil cross section is now specified by the external geometry the previous
input Nturns (number of wire turns in the coil) is now a output. It is calculated
according to the number of wires of individual cross section Aw that will fit into
the available cross section Ac given the specified packing factor α.

N = α
Ac

Aw
(25.63)

Magnetic Field The electrical current flowing through a voice coil produces
a magnetic potential difference per Ampere’s law as discussed in section 25.4
except because the coil axis is along the x direction instead of the z direction
there are differences, as illustrated for a left-turning inner pole in figure 25.5.
The magnetic potential

∮
H · ds varies with the number of coil turns n(x)

enclosed by the integration path, depending on the position x where the path
intersects the coil. In the Sage solution the magnetic potential induced by the
coil is presumed concentrated across the air gap between poles but it is not
localized to the coil. The potential varies from zero a any pole point to the left
of the coil to the full potential ∆Ψ = −NI at any point to the right of the coil.
At points within the coil the potential varies linearly between the two. The case
of a right-turning inner pole is similar except the integration path encloses the
coil turns to the right of point x.

Induced Voltage The rate of change of magnetic flux dφ/dt passing through
the coil core (the linked flux) still induces a voltage difference across the coil
terminals according to Faraday’s law (25.27) of section 25.4. But now the linked
flux varies with position. Referring to figure 25.6 for the case of a left-turning
inner pole piece, the linked flux at a point x in the coil is the total z directed

298 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

(radial) flux crossing the magnetic gap between x and the pole endpoint, or

φL(x) =
∫ b

x φx, where x is a point within the coil and b is the pole endpoint.
The flux change that determines the voltage difference is d 〈φL〉 /dt where 〈φL〉
is the average linked flux over the coil length. The case of a right-turning inner
pole piece is similar except the pole endpoint is reversed.

Magnetic Force Unlike a transverse coil, each turn of a voice coil creates
an x directed force in the same direction. For a voice coil of circumference W
moving through an external magnetic flux density B the differential force on a
single turn of wire carrying current I is

dF = W (I × B) (25.64)

Under the assumption that I and B are perpendicular and give rise to a force
in the x direction, only the magnitudes I and B matter and the x-directed force
on the i-th turn of wire for current in the direction shown in figure 25.6 is

Fi = −WIB (25.65)

Noting that WB is just the flux distribution φx and that the number of wires
per unit length is N/L, where N is the number of turns in the coil and L is the
coil length, the differential force acting on a coil segment of length dx is

dF = −Iφx
N

L
dx (25.66)

So the total force acting on the coil is

F = −NI
L

∫

x

φx (25.67)

25.6.7 Moving Magnetic Components

TPermMagEMov

Moving magnetic components implement the physics of their non-moving coun-
terparts discussed in section 25.5 except resolve the magnetic flux and field in
the x direction and override the Lpath and Apath inputs in terms of the parent
magnetic gap dimensions. Fourier series outputs for magnetic potentials, fields
and flux densities are omitted because they would not capture the variation of
these quantities with x. For detailed information about such things you can
refer directly to the solution grid.

For software design reasons the embedded objects representing magnetic
components are subdivided into a parent embedment piece with variables com-
mon to all components and a child object piece with variables specific to the
particular component. The graphical-interface icons for the embedment piece
are all similar to icon shown in the margin for the case of a permanent magnet.
The icons for the child object piece appear in the margins under the individual
sections below describing particular components.

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 299

x

y
z

dx

dy

dz
I

m

Figure 25.7: Magnetic domain represented by a single effective current loop I
enclosing area dx dy in a differential volume dx dy dz. The current induces a
magnetic dipole moment m oriented in the z direction with magnitude m =
Idx dy and average volumetric density −M .

Air Gap

TEmbdAirGap

This component represents an empty gap that may be used as an axial spacer
(parallel to magnetic gap) between other magnetic components.

Permanent Magnet

TEmbdPerm-
Mag

This component represents a rectangular magnet of dimensions L ×W (length
times width) moving between magnetic pole faces or a radially magnetized ring
of magnets moving between cylindrical pole faces where W corresponds to the
average of the inner and outer pole circumferences. The magnetization is pre-
sumed parallel to the z-axis (across magnetic gap).

Fourier series output FUtilization representing magnet utilization factor does
make sense for a moving magnet and is included. The same definition applies
as for a stationary permanent magnet, namely the BH energy product along
the demagnetization curve as a fraction of the maximum value. Except now the
value is an x-spatial average.

B H Relationship The B(H) functional relationship is the same as described
in section 25.5 for a stationary magnet except based on an x-distribution of
magnetic flux φx as described above.

Magnetic Force The total magnetic potential difference across a magnet
with z thickness hm may be broken into two terms

∆Ψ ≡ ∆ΨM − hmB/µ0 (25.68)

in effect defining ∆ΨM , the component of the potential difference driving the
magnetization.3 In terms of ∆ΨM and pole width W the x-component of force
acting on the moving magnet is

F = −W
∫

x

∆ΨM
∂B

∂x
(25.69)

3B ≡ µ0(H + M) ⇔ B/µ0 ≡ M + H ⇔ hmB/µ0 ≡ ∆ΨM − ∆Ψ

300 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

This follows as a generalization of equation (25.60) derived above for transverse
moving coils except applied the individual magnetic domains in a permanent
magnet. For example, applied to the current loop I within the differential vol-
ume dx dy dz illustrated in figure 25.7. Current I produces a magnetic potential
difference ∆ΨI = −I. So substituting ∆ΨI for ∆Ψc, and dy for W in equation
(25.60) gives

dF = −dy∆ΨI [B]
x+dx
x (25.70)

Taking the limit as dx→ 0 gives

dF = −∆ΨI
∂B

∂x
dx dy (25.71)

Integrating over the total magnet volume assuming uniform ∆ΨI and B in the
y direction, the dy integral reduces to the integrand times W so that the total
force is

F = −W
∫

x

∫

z

∆ΨI
∂B

∂x
(25.72)

Assuming B does not depend on z, ∂B
∂x factors out of the z integral and then

∫

z ∆ΨI = ∆ΨM , resulting in equation (25.69). The same derivation also applies
to the case when eddy currents are present in the magnet. Then ∆ΨM is
the component of the magnetic potential difference driving both magnetization
(magnetic domain currents) and eddy currents.

Force by Energy Conservation The force on a magnet can also be derived
from energy considerations. Think of the total force on the magnet as the
sum of a large number of force elements acting on the individual magnetic
domains moving through the external magnetic field. Referring to figure 25.7
each domain has an associated magnetic dipole moment mi (not necessarily
in the z direction) with a volumetric moment density −M i (i is the domain
index). By the nature of permanent magnets, or any ferromagnetic material for
that matter, the magnitude of each magnetic dipole remains constant and only
the angle of alignment with an external magnetic field H changes.

Mechanical energy input Fi · dx resulting from force Fi acting on M i in-
creases the magnetic energy H ·dB within the volume element, but only the part
associated with the magnetization component of the magnetic field −M i · dB.
More on this later but for now it follows that the x component of force acting
on the magnetic domain is

Fi = −M i ·
∂B

∂x
(25.73)

Summing this over all the domains in the magnet amounts to an integral over
the magnet volume. In the one-dimensional Sage formulation the B field is
presumably directed along the z axis and varies only in the x direction. So in

integrating M · ∂B
∂x over any y-z plane, the vector ∂B

∂x factors out leaving only
the integral of M which may be replace by the integral of the average magne-
tization in the y-z plane. In the Sage formulation the average magnetization is

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 301

presumed oriented along the z axis with the scalar magnitude M , which may
be replaced with the equivalent ∆ΨI/dz. Likewise B can be replaced with its
scalar magnitude B. So the integrand reduces to the same one above in equation
(25.71) and likewise the total force reduces to the same equation (25.69).

Returning to the justification for only −M i · dB balancing the mechanical
energy change, equation (25.73) is equivalent to

Fi = (H − B/µ0) ·
∂B

∂x
(25.74)

which follows from the definition H ≡ B/µ0−M i. Arguing as before it follows
that in the one-dimensional Sage formulation the x-component of force acting
on the moving magnet may be written as

F = hmW

∫

x

(H −B/µ0)
∂B

∂x
(25.75)

In this form the equation reveals something about global energy conservation. In
the total electromagnetic model it is necessary that Fdx energy changes balance
∆V I energy changes in electrical coils. For that to be the case the change in
magnetic energy resulting from the two must be the same. Taking the case of
an air-core solenoid for example, the change in magnetic energy in the core as a
result of coil electrical work dEc is (H −B/µ0)dB.4 So the change in magnetic
energy associated with mechanical energy input must be likewise.

Soft Ferromagnetic Material

TEmbdSoft-
Mag

This component represents a rectangular piece of soft ferromagnetic material of
dimensions L ×W (length times width) moving between magnetic pole faces
or a radially magnetized ring of material moving between cylindrical pole faces
where W corresponds to the average of the inner and outer pole circumferences.

The magnetic energy and force relationships are the same as for a permanent
magnet. The only difference is that the functional relationship between magnetic
flux density B and magnetic field H is governed by the hysteresis formulation
described in section 25.5 for a stationary soft ferromagnetic material except in
terms of an x-distributed of magnetic flux φx.

25.6.8 Solution Method

The geometrical layout and solution method for the combination of a magnetic
gap, moving magnetic container and electromagnetic components within are
illustrated starting with figure 25.8, which shows a top-level side view (y-axis
into page).

4This follows because the voltage drop induced in the coil is ∆V = NA dB/dt, where N
is the number of winding turns and A is the core section area. The core magnetic field is
H = NI/` − B/µ0, where ` is the flux path length in the core. So I = (H − B/µo)`/N and
the coil energy works out to dEc/dt = A`(H − B/µ0)dB/dt

302 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

pole pair 1

F-

pole pair 2

F+

x +pos xo

xneg

moving magnetic container

Figure 25.8: Side view of two-pole magnetic gap with moving magnetic container
inside. The magnetic force between the poles and moving container produces
equal and opposite forces F+ and F− transmitted to other moving components
of the model, or vice-versa. The magnetic container is a member of the relative
moving part family defining two position coordinates xneg and xpos. The left
(negative) end of pole pair 1 is identified with xneg and the left end of the
moving container with xpos + xo where xo is a fixed offset.

The interesting magnetic physics begins with figure 25.9. The magnetic pole
faces are presumed to have uniform magnetic potentials Ψ1+, Ψ1−, Ψ2+, Ψ2−.
Magnetic flux is presumed to flow in the z direction between the pole faces,
passing through the total air gap gz or through an electromagnetic component
of some thickness lying between the pole faces, in series with air gaps ∆z on
each side. A relatively small fringing magnetic flux also flows between the pole
faces and points on the surface of the electromagnetic component lying outside
the pole faces, in which case the flux passes through an additional effective air
gap gf as illustrated for the point x. Likewise for points lying to the left of pole
pair 1 or to the right of pole pair 2. For such calculations the outer magnetic
potential is presumed to be that of the nearest pole face, or in the case of the
region between poles a smooth transition between the potentials of the pole
faces on either side. Points on the faces of the electromagnetic component to
the left of the mid-plane between the poles are assumed to transfer magnetic
flux to pole pair 1 and those to the right to pole pair 2.

Fringe Field The effective air gap gf for the fringe region beyond the pole
faces is based on an approximation to the field solution for a magnetic dipole
(formed by the pole faces) in vacuum (air). This is a reasonable assumption
if something like a voice coil occupies the fringe region but not so reasonable
if there is a ferromagnetic material or another pole face there. In those cases
the model underestimates the fringing flux to some extent but it is hard to
do better in a one-dimensional solution. For a magnetic dipole the magnetic
potential variation in the z direction along the plane of symmetry equidistant
from the two poles (plane midway between pole faces) varies with distance x
from the pole, for x� gz as

∂Ψ

∂z
≈ 1

8

g3
z

x3

(
∂Ψ

∂z

)

x=0

(25.76)

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 303

where gz is the pole separation distance. In terms of the Sage solution the
effective pole separation s = gz + 2gf in the fringe region that gives the same
magnetic flux distribution for a given pole-to-pole potential difference, again for
x � gz, is

s

gz
≈ 8

x3

g3
z

(25.77)

But s/gz must approach unity for x = 0 and also a magnetic gap is not quite
as simple as a magnetic dipole. In fact by similarity of governing equations the
magnetic field between magnetic pole faces is similar to the electric field in a
parallel plate capacitor. This is useful because fringe fields in capacitors has
been well studied. So the approach to approximating flux fringing in Sage is to
start with a formulation involving an unknown parameter a that has the correct
x variation for x� gz

s

gz
= 1 + a

x3

g3
z

(25.78)

and then fit a so the resulting fringing flux is consistent with published capacitor
data. The baseline formula for capacitance per unit length in terms of plate
spacing gz and width L (using Sage notation) is basically C ∝ L/gz. According
to [42], the effective plate width increment Lf that must be added to the actual
width to produce the actual capacitance using the baseline formula is accurately
correlated by

Lf

gz
=

1

π

(

1 + ln
2πL

gz

)

(25.79)

The width increment is only a week function of L/gz so it is reasonable to
assume a representative value L/gz = 10 for present purposes, in which case the
required length increment is

Lf = 1.636 gz (25.80)

In other words the fringing flux amounts to a plate extension of 0.818 gz on each
side. A spreadsheet numerical integral of fringing flux density (per side) based
on equation (25.78) of the form

B = B0
1

1 + ax3

g3
z

(25.81)

produces the required total flux fringing flux for the value a = 3.15.
∫ ∞

0

B = 0.818B0gz (25.82)

The indefinite integral of fringing flux at any point x beyond the pole end is
approximately correlated as

∫

B dξ = B0gz

{
1.13ξ − 0.443ξ2 if ξ ≤ 1
0.818− 1

6.3(ξ+0.1)2 if ξ > 1
(25.83)

where ξ = x/gz

304 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Y1+

Y1-

pole pair 1
gz

Y1+

pole pair 2

Y2-

DZ

x electromagnetic component

mid-plane

x

y
z

gf

Figure 25.9: Two-pole magnetic gap showing inner electromagnetic components
of different thicknesses, arranged in series to fill the container length.

Solution Logic Figure 25.10 depicts the solution variables and solution logic.
At the outer level are lumped potentials Ψ+ and Ψ− evaluated from inner
solution variables Ψ and ∆Ψ as Ψ+ = Ψ + ∆Ψ/2 and Ψ− = Ψ - ∆Ψ/2.
Ψ and ∆Ψ are solved much like the solution for an ordinary air gap. Potential
offset Ψ is solved implicitly in terms of the total pole magnetic fluxes φ+ and
φ− from the continuity condition

φ+ = φ− (25.84)

Potential difference ∆Ψ is solved implicitly from the condition that the total
magnetic flux φ (evaluated as (φ+ + φ−)/2) is the sum of the part through the
air gap φair (to the left of the dotted line) plus the part through the embedded
magnetic component φe.

φ = φair + φe (25.85)

The magnetic flux through the air gap is evaluated explicitly from the vacuum
relationship

φair = −µ0
∆Ψ

gz
Aair (25.86)

Where µ0 = 4π1.0−7 (H/m) is the permeability of free space and Aair is the
uncovered area of the pole (to the left of the dotted line). The embedded
component magnetic flux φe is the integral of the magnetic flux distribution
φx (evaluated as (φx+ + φx−)/2) for that part of the embedded component
exchanging flux with the outer poles (the whole component for a single-pole
gap or that part on one side or the other of the mid-pole position for a two pole
gap).

Within the embedded magnetic component flux distribution φx is solved
independently as a function of the outer potentials Ψ+ and Ψ−. The solution
occurs in a spatial grid so as to capture the changing flux with position x
while moving through the gap. The potential offset Ψe is solved implicitly at
each point of the grid in terms of the magnetic flux distributions φx+ and φx−

(Wb/m) from the continuity condition

φx+ = φx− (25.87)

25.6. LINEAR MOTORS, ALTERNATORS, ACTUATORS 305

fx+

Ye+

Ye-

fx-

fe+

fe-

f+

Y+

Y-

fair

DY

electromagnetic
component

Y

DYe

Ye

pole pair

f-

Figure 25.10: Solution schematic for electromagnetic component located at the
negative end of the container between and offset from magnetic pole faces. The
arrows indicate the direction of information flow, not magnetic flux direction.
The gap between the poles is expanded for clarity.

At this point there is a twist in the solution logic required because there is no
external connector object to enforce magnetic potential continuity. So instead
of solving magnetic potential continuity from continuity of magnetic flux distri-
bution it is the other way around. Flux distributions φx+ and φx− are solved
implicitly from the conditions that the outer potential difference equals the sum
of the potential difference across the inner component plus that across the air
gaps on either side, namely

Ψ+ − Ψe+ = ∆Ψz (25.88)

and

Ψ− − Ψe− = −∆Ψz (25.89)

where ∆Ψz is the potential difference for flux φx flowing across the air gap ∆z (or
∆z+∆x for points outside the pole boundaries). In the above equations Ψ+ and
Ψ− come from the previous air-gap solution so they may be taken as given and
Ψe+ is evaluated as Ψe + ∆Ψe/2 and Ψe− as Ψe - ∆Ψe/2. Potential difference
∆Ψe comes from the internal physics of the electromagnetic component as a
function of flux distribution φx.

Energy Leakage Normally the principle of global energy conservation is built
into the numerical differencing methods used for Sage’s model components. The
energy flowing out of one computational cell is exactly balanced by the energy
entering another. But this is not so simple for electromagnetic components

306 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

moving between fixed poles. The grid of the embedded magnetic component
moves relative to the poles and the boundaries of the computational cells do
not always line up with the pole endpoints. The magnetic flux from the poles
is apportioned into the moving grid so as to conserve magnetic flux but the
magnetic potential across the grid computational cells and the magnetic force
calculation are not guaranteed 100% accurate. In effect there may be a small
amount of energy leakage between the outer poles and the embedded moving
component.

Prior to v12.3 Sage repaired this energy leak by scaling the value of the
magnetic force acting on the components inside the moving container so that the
time-average electro-magnetic and mechanical power dissipated in the moving
container equaled the magnetic energy flow into the pole gaps. This approach
worked reasonably well, although it sometimes did not make sense — e.g. when
magnetic force was uniformly zero or produced negligible power because it was
in phase with displacement or the displacement was very small. Sometimes it
produced slow or non-converging solutions, or scale factors far different from 1.

Starting with v12.3 Sage abandoned scaling the magnetic force as a means
of producing energy conservation and replaced the scale-factor output Fscale
of moving electromagnetic containers with EfluxErr, an output that just dis-
plays the discrepancy between the power flow into the pole gaps and the power
dissipated in the moving container.

25.7 Magnetic Material Physics

In a vacuum the magnetic flux displacement resulting from a magnetic field H
is simply

B ≡ µ0H (25.90)

where µ0 ≈ 1.257E-6 (H/m) is the permeability of free space. In ferromagnetic
materials, including permanent magnets, magnetic domains align in response
to a magnetic field, increasing the magnetic flux displacement. The domain
alignment is characterized by the so-called magnetization Mdefined by

B ≡ µ0(H +M) (25.91)

The relative permeability µr is the factor by which the vacuum permeability
must be multiplied to account for the magnetization. It is defined by

µr ≡ H +M

H
(25.92)

Domain alignment may also be characterized in terms of the magnetic polariza-
tion J defined by

B ≡ µ0H + J (25.93)

In this form it is clear that the residual magnetic flux Br at H = 0 is the same
as the residual magnetic polarization Jr.

25.7. MAGNETIC MATERIAL PHYSICS 307

-1.0

0.0

1.0

-20 -15 -10 -5 0 5 10 15

R
e

la
ti

v
e

 M
a

g
n

e
ti

za
ti

o
n

 M
/M

s

Relative Magnetic Field H/HcB

solved from hysteresis model

20 -15 -10 -5 0 5 10 15 20

Relative Magnetic Field H/HcB

from pseudo-hysteresis model

Figure 25.11: Excel spreadsheet solutions of differential equation (25.94) for H
cycling back and forth between positive and negative limits over six different
ranges, decreasing in powers of two. Compared to curves from pseudo-hysteresis
equation (25.40) on the right. The curves calculated from the differential equa-
tion overestimate coercive force Hc slightly. Parameter α = 1.49E-4, based on
properties for non-oriented silicon steel (2.9%): µr = 8000, Ms = 1.59E6 A/m,
Hc = 40 A/m.

25.7.1 Soft Ferromagnetic Materials

Soft ferromagnetic materials are characterized by high relative magnetic perme-
ability µr and relatively low coercive force (H at M = 0 intercept) compared to
a permanent magnet. In typical usage the magnetization alternates from near
saturation in one direction to near saturation in the other so that magnetic
hysteresis losses may be significant.

Hysteresis Model

Jiles and Atherton [33] in 1986 laid out the mathematical underpinnings of
magnetic hysteresis in the form of a differential equation. The primary variable
to be determined is the magnetization M in the defining relationship B ≡
µ0(H + M). In the Jiles and Atherton formulation M is the solution of a
differential equation. The underlying differential equation for M is:

dM

dH
=

{
(Ma−M)∨0

Hc
if dH > 0

(M−Ma)∨0
Hc

if dH < 0
(25.94)

The ∨ operator on the right side is the max operator (i.e. ∆M ∨ 0 means the
larger of ∆M and 0). Ma(H) is the so-called anhysteretic magnetization — the
average of the upper and lower branches of the actual hysteresis curve shown
in figure (25.11). Hc is the coercive force (point where the lower branch of the
hysteresis curve crosses the H axis).

308 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Compared to the formulation used in Jiles and Atherton the above equation
omits a relatively small term α(Ma −M) in the denominator on the right side.
The idea is that the solution M(H) approaches asymptotically the anhysteretic
magnetization Ma(H) for large negative and positive values of H but typically
falls somewhat above or below Ma depending on the direction H is changing.
The purpose of the ∨ operator is to avoid a non-physical behavior in the M
solution when dH changes sign. For example just before a maximum-H reversal
point where dH goes from positive to negative the M value is always slightly
below Ma. So just after flow reversal M − Ma is negative and without the
∨ operator M would continuing to increase ((M −Ma)dH > 0). With the ∨
operator the M value instead remains constant until H decrease to the point
where Ma(H) again drops below M (or dH reverse direction again).

In solving the above differential equation there is a complication because the
anhysteretic magnetization is defined in terms of an effective magnetic field He

related to magnetic domain coupling. This effective magnetic field is

He = H + αM (25.95)

where α is the inter-domain coupling coefficient. The anhysteretic magnetization
is taken to be a function that varies smoothly between saturation values −Ms

and Ms:
Ma(x) = Ms(coth(x) − 1/x) (25.96)

The independent variable is the dimensionless effective magnetic field

x ≡ He

αMs
(25.97)

This differs from the Jiles & Atherton formulation which defines x as He divided
by another parameter. But it will turn out that the above formulation suffices
for the M solution to have the correct slope near M = 0, which is good enough
for Sage.

To speed up computation Sage approximates the function coth(x) − 1/x on
the right side by the function

f(x) =

{
sign(x) − 1

x
if |x| > 3

x
3

[

1 − x2

18

(

1 − x2

27

)]

otherwise
(25.98)

The two branches of the approximation are continuous and smooth at x = ±3.
Both original and approximate functions are shown in figure 25.12.

M intercept Hc Referring to the lower branch of the major hysteresis loop in
figure 25.11), the M intercept of the magnetization solutionM(H) starting from
a large negative H is Hc. This is already built into the governing differential
equation (25.94). To see this it is helpful to simplify the dH > 0 branch of that
equation to

dM

dH
=
Ma −M

Hc
(25.99)

25.7. MAGNETIC MATERIAL PHYSICS 309

1 - 1/x

coth(x) - 1/x

x/3 [1 - x /18 (1 - x /27)]² ²

Figure 25.12: Dimensionless anhysteretic magnetization function (25.96) and
piecewise approximation (25.98).

So the slope of M at Hc is (Ma(Hc)−M(Hc))/Hc. On the other hand the slope
of the anhysteretic magnetization curve Ma (curve midway between upper and
lower branches of the major hysteresis loop) at Hc is approximatelyMa(Hc)/Hc

(since Ma(0) = 0). For the two slopes to be equal requires M(Hc) = 0. In other
words that the M intercept is Hc. This conclusion applies to all useful soft
ferromagnetic materials where the curves M(H) and Ma(H) are nearly linear
and parallel in the range (−Hc, Hc).

Determining α So the slope of M and Ma are the same near M = 0 but
what determines the steepness? Parameter α does. To see this start with the
definition of magnetic susceptibility κ = µr−1. It follows from equation (25.91)
and the definition of relative permeability B = µoµrH that

κ = dMa/dH (25.100)

Using the above approximation (25.98) (namely, f(x) ≈ x/3 near x = 0), it
follows that

κ =
dMa

dH He=0
=

d

dH

(
1

3α
(H + αM)

)

=
1

3α

(

1 + α
dM

dH

)

(25.101)

But since the M and Ma are close it is reasonable to approximate dM/dH on
the right side with dMa/dH = κ, obtaining

κ =
1

3α
(1 + ακ) (25.102)

310 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Js

J = Br r

-HcJ

H

J

(JH)max

J(H)

Figure 25.13: The approximate demagnetization curve given by equations
(25.107) and (25.108) determined by parameters Jr, HcJ and Kjh.

or solving for α:

α =
1

2κ
(25.103)

In other words, this is the value of inter-domain coupling coefficient α in the
definition of effective magnetic field (25.95) required for the solution to have the
correct magnetic susceptibility κ.

At this point parameter α is specified in terms of bulk material properties and
the solutionM(H) to differential equation (25.94) can in principal be calculated.
Except under the coarse time grid employed in Sage and the nonlinearity of
M(H) coupled with possible non-sinusoidal variations inH produce convergence
issues and numerical artifacts in the solution. So the Sage formulation uses the
pseudo-hysteresis approximation discussed in section 25.5.8.

25.7.2 Permanent Magnets

Permanent magnets are characterized by high coercive forces and are supplied
in a magnetized state. Unlike soft ferromagnetic materials they are never, by
design, subject to a high enough demagnetizing field to change the magneti-
zation. Rather the magnetization varies only slightly and nearly reversibly so
that hysteresis losses can be neglected. For practical purposes they are defined
according to a fixed demagnetization curve B(H) that can be formulated as
follows.

Permanent magnets like other ferromagnetic materials have a saturation
magnetic polarization Js where all the magnetic domains align with the external
magnetic field. As the external magnetic field varies from a positive high value
to a negative high value the magnetic polarization follows the upper branch of
a hysteresis loop which always looks something like the approximation shown
in figure (25.13). The saturation and residual magnetic polarizations Js and Jr

25.7. MAGNETIC MATERIAL PHYSICS 311

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

D
im

e
n

si
o

n
le

ss
 M

a
g

n
e

ti
c

P
o

la
ri

za
ti

o
n

 J
 /

 J
r

Dimensionless Magnetic Field H / HcJ

permanent magnet demagnetization curves

for different Kjh values

K =0.6
jh

K =0.7
jh

K =0.8
jh

K =0.9
jh

K =0.95
jh

K =0.51
jh

Figure 25.14: Permanent magnet demagnetization curves for different values of
shape parameter Kjh. Curves generated using equation (25.107).

and the coercive force HcJ are all labeled on the curve. The exact shape of the
demagnetization curve is not important so Sage approximates it in a simple but
general way. Sage formulates the part of the hysteresis curve for J > 0 as the
simple hyperbola J ∝ −1/H with the origin displaced to the second quadrant.
The part for J < 0 is a linear continuation of that function, which is physically
incorrect for H � HcJ but moot since permanent magnet are demagnetized if
they operate below HcJ . In Sage, the linear continuation facilitates the implicit
solution of H .

The shape of this function in the second quadrant (upper half of figure 25.13)
is determined by how close Jr is to Js. If Jr is near the asymptotic value Js

then there will be a pronounced knee in the curve. If Jr is small compared
to Js then the curve will be approximately linear. The (JH)max point (where
JdH + HdJ = 0) occurs at the knee of the curve so the shape of the curve is
also determined by the (JH)max value compared to the product JrHcJ . It is
convenient to define the dimensionless shape factor Kjh by

K2
jh ≡ (JH)max

JrHcJ
(25.104)

For a nearly linear J(H) demagnetization curve the (JH)max point falls near
the point (−HcJ/2, Jr/2), so the value of Kjh is close to 1/2. For a curve with a
pronounced knee the (JH)max point falls near (−HcJ , Jr), so the value of Kjh

is close to 1.
It is straight forward but a bit tedious to work out the approximate de-

magnetization function in terms of Br , HcB and K. It is useful to define a

312 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

constant

C ≡ 1/K + 1

1/K2 − 1
(25.105)

and then

D ≡ C

C2 − 1
(25.106)

in terms of which the approximate demagnetization function turns out to be

J(H) = Br

[

CD− D2

CD + H
HcJ

]

if H ≥ −HcJ (25.107)

For H < HcJ the demagnetization function is just the linear continuation

J(H) = BrC
2

[
H

HcJ
+ CD− D

C

]

(25.108)

The demagnetization curves resulting from different values of K are shown in
figure 25.14.

Maximum Energy Product

Permanent magnets are often characterized by their so-called maximum energy
product BH along the demagnetization curve. AlthoughH is negative along the
demagnetization curve and B positive so it is really −BH that has a maximum.

What is the significance of the maximum energy product? Given a simple
magnetic circuit consisting of a permanent magnet of length Lm in series with
a linear magnetic material (B = µH) of length Lg and cross section Ag, the
magnet energy product −BH is proportional to the total energy stored in the
magnetic material. This follows because the total energy stored in the magnetic
material is 1/2BgHgLgAg. But B and H in the two materials are related by
BmAm = BgAg and −HmLm = HgLg , so that the total energy stored in the
magnetic material is −1/2BmHmLmAm — in other words, proportional to the
magnet BH product and the magnet volume.

In a magnetic circuit application the actual magnet −BH product as a frac-
tion of the maximum value can be viewed as a magnet utilization factor. In
Sage permanent magnet components it is represented by the output FUtilization
where the maximum value (BH)max is evaluated numerically for each perma-
nent magnet instance because it is complicated to find an analytic expression
in terms of the above magnetization formulation (BH ≡ JH + µ0H

2). If the
utilization factor is low then the permanent magnet may not being used to its
full potential. It may be low because H is small (magnet driving flux through
the circuit with minimal effort) in which case you might get by with a smaller
magnet. Or it may be low because B is small (magnet too weak to drive flux
through the circuit) in which case you may need a larger magnet. Because B
and H vary with time in most applications the magnet utilization factor also
varies with time so it is output as a Fourier series. Generally speaking the mean
value and harmonic amplitudes should not all be small.

25.7. MAGNETIC MATERIAL PHYSICS 313

x

y
y = a/2

y = -a/2

L

J++ + ++ +B a

Figure 25.15: Cross section of a single lamination of magnetic material show-
ing eddy current distribution J resulting from changing magnetic flux dB/dt
directed into the page and uniform within the lamination. A typical current
streamline follows the dotted line, which is somewhat idealized near the end-
points.

25.7.3 Eddy Currents

Magnetic materials are usually also electrical conductors and a changing mag-
netic flux induces an electrical current flow just like in a wire coil. Except the
current flow is in the form of a current distribution within the bulk material.
The current flows along the electric field induced by the changing magnetic flux
in the form of simply-connected closed loops as depicted by loop J in this sketch.
(note: The symbol J denotes current density here but is also used to denote the
magnetic polarization elsewhere.)

Y+

Y–

l

J

Heddy
x

y
z

Heddy

But there are no net voltage differences within the material — the electric field
produces a voltage gradient along the field direction that is canceled exactly by
an opposite voltage gradient due to electrical resistance to the current flow. All
other things being equal, materials with low resistivity tend to have large eddy
currents in order to create sufficient large opposing voltage gradients. Except
the eddy currents themselves produce magnetic fields (Heddy of illustration)
that oppose the changing magnetic flux so materials with low resistivity reduce
the changing magnetic flux somewhat. In the case of a superconductor the
eddy currents are always exactly enough to completely cancel any changing
magnetic flux. So you would not want to use a superconducting material in an
AC magnetic circuit.

To minimize electrical dissipation, the eddy currents are by designed confined
in practical magnetic circuits to thin layers within laminations. The lamination
layers are always parallel to the magnetic field direction, which is the z direction
in Sage. Figure 25.15 shows a typical lamination with the z direction into the

314 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

page. The figure depicts the current distribution J(y) flowing in any x−y plane
of the material. It is uniform in the x direction and symmetrical about the x
axis. This is reasonable (e.g. satisfies solution boundary conditions) except for
small regions near the x endpoints where the current reverses direction. The
analysis below ignores these end effects.

Consider the current path indicated by the dotted line in figure 25.15. From
Faraday’s law the total change of magnetic flux enclosed by the current path
(d/dt

∫
BdA) induces a voltage drop ∆VL equal to the negative of the line-

integral
∮

E · ds along the path. Presuming B is uniform within the enclosed
area of approximately 2yL the total inductive voltage change around the loop
is

∆VL = 2L
dB

dt
y (25.109)

Applying Ohm’s law to the same current loop and approximating the path
length as 2L the total resistive voltage drop is

∆VR = −2LσJ(y) (25.110)

where σ is the electrical resistivity. Adding these two equations and using the
fact that ∆VL +∆VR = 0 in a closed loop, the result is a simple formulation for
the current density in a lamination

J(y) =
1

σ

dB

dt
y (25.111)

The eddy current distribution produces a magnetic field that opposes the ex-
ternal magnetic field. Looking at the current streamlines as windings in a coil
the field within the region between (−y, y) results from the current streamlines
outside that region, according to Ampere’s law. The magnetic field varies from
zero at the outer surface to maximum along the x axis. For any y > 0 the
magnetic field is

HJ(y) =

∫ a/2

y

J(y)dy (25.112)

Substituting the right side of equation (25.111) for J(y) gives

HJ(y) =
1

σ

dB

dt

(
a2

4
− y2

)

(25.113)

Omitting some details the average magnetic field over the range 0, a/2 is

Heddy =
a2

12

1

σ

dB

dt
(25.114)

In the superconductor limit σ → 0 the two previous equations are singular unless
dB/dt = 0. That is interesting but Sage does not deal with that possibility and
would produce a divide-by-zero error. The net magnetic fieldH that determines

25.7. MAGNETIC MATERIAL PHYSICS 315

the magnetic flux and magnetization usually associated with ferromagnetic ma-
terials (e.g. B = µ0(H +M)) is defined in terms of the external magnetic field
Hext and the mean eddy field as

H = Hext −Heddy (25.115)

The electrical dissipation produced by the eddy current distribution can be
calculated in one of two ways. First by analogy with a bundle of wires. Imagine
the eddy currents flow in rectangular wire elements of length L and area `dy,
where ` is the z thickness of the magnetic material. The loss in such a wire
element is

dWeddy = I2R = (J`dy)2
(

σ
L

`dy

)

= σL`J2dy (25.116)

Substituting the right side of equation (25.111) for J and integrating over the
lamination limits (−a/2, a/2) gives the total eddy current instantaneous power
dissipation

Weddy =
1

12

a3L`

σ

(
dB

dt

)2

(25.117)

or power dissipation per unit volume

weddy =
1

12

a2

σ

(
dB

dt

)2

(25.118)

Another way to calculate the magnetic power dissipation per unit volume is
directly from the rate of change of magnetic energy per unit volume

weddy = Heddy
dB

dt
(25.119)

According to equation (25.114) both give the same result. The important thing
to note is that the loss scales with the square of the lamination thickness a and
inversely with the resistivity σ.

Ring Configurations

The cross section of a magnetic circuit perpendicular to the flux direction is
often a circular ring. There are three cases of interest, a split ring, a closed
ring with zero magnetic flux inside the ring and a closed ring with an equal but
opposite magnetic return flux on the inside. In principle, such magnetic circuits
can also be subdivided into laminations consisting of nested rings. For purposes
of Sage modeling it is necessary to figure out how to model the eddy current
losses in these rings in terms of equivalent rectangular laminations.

Case 1 split ring This case is illustrated in figure 25.16. Neglecting curva-
ture effects (a � Rm) this is just the result of bending a rectangular lamination
into a circular shape. The same analysis applies as before and the power dis-
sipation per unit volume in terms of the ring (lamination) thickness a is again
given by equation (25.118).

316 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

J

JJ

y
y = -a/2

y = a/2

+

+
+

+

+

+ a

Rm
B

Figure 25.16: Cross section of a single lamination of magnetic material bent into
a split ring shape of mean radius Rm. Neglecting curvature effects (a � Rm),
the eddy current distribution J is the same as figure 25.15 for a rectangular
lamination.

Case 2 closed ring, no magnetic flux inside This case is illustrated in
figure 25.17. Compared to figure 25.16 the upward and downward currents at
the split vanish and the current flows in concentric rings. The assumption that
there is no magnetic flux inside the ring means that the average current enclosing
any point inside the ring is zero so that the current flows in one direction above
the mean radius Rm and the other direction below. So the current distribution
is the same as the split ring case.

Case 3 closed ring, return magnetic flux inside This case is illustrated
in figure 25.18. The total magnetic flux in the core is presumed equal and op-
posite that in the ring (

∫

core
Bcore = −

∫

ring
Bring). Compared to case 2 the

current distribution must be shifted. A current path at the ring inner diameter
now incloses the maximum magnetic flux, with the enclosed magnetic flux di-
minishing for progressively larger current paths to zero at the outer diameter.
In terms of the local coordinate y of figure 25.18, the current distribution is zero
at the outer diameter (y = 0) and increases linearly (ignoring curvature effects)
to a maximum value at the inner diameter (y = a).

The equations for induced and resistive voltage drops are similar to equations
(25.109) and (25.110). The section area between the outer diameter and the
current path at y is approximately 2πR(y)y, where R(y) = 2π(Rm + a/2− y) is
the current path circumference. So the total inductive voltage change around
the current path is

∆VL ≈ 2πR(y)
dB

dt
y (25.120)

Applying Ohm’s law to the same current path, the total resistive voltage drop
is

∆VR = −2πR(y)σJ(y) (25.121)

25.7. MAGNETIC MATERIAL PHYSICS 317

J

J

y
y = -a/2

y = a/2

+

+
+

+

+

+

Rm
B

a

Figure 25.17: Cross section of a single lamination of magnetic material bent
into a closed ring shape with no magnetic flux inside the ring. The eddy current
distribution J is identical to figure 25.16.

J

J

y
y = 0

y = a

+

+
+

+

+

+

Rm–

–

–

–

–

–

B

-B

a

Figure 25.18: Cross section of a single lamination of magnetic material bent into
a closed ring shape with an opposite return magnetic flux inside the ring. As
a consequence the eddy current distribution J shifts compared to figure 25.17,
varying approximately linearly from 0 at the outer diameter to maximum at the
inner diameter.

318 CHAPTER 25. ELECTROMAGNETIC COMPONENTS

Solving ∆VL + ∆VR = 0 leads to the same eddy current density as equation
(25.111). The eddy current loss is also similar to the rectangular case except for
wire element length L replaced by the circular path circumference 2πR(y) and
integrating dWeddy from y = 0 to y = a. Approximating 2πR(y) by the mean
value 2πRm, gives the total eddy current power dissipation

Weddy =
1

3

a32πRm`

σ

(
dB

dt

)2

(25.122)

or power dissipation per unit volume

weddy =
1

3

a2

σ

(
dB

dt

)2

(25.123)

This is four times larger than cases 1 and 2, or the same as the loss for a
rectangular lamination with thickness 2a. In other words, same as a rectangular
lamination with thickness twice the ring thickness.

Chapter 26

Radiation Exchange
Components

The components in this chapter model thermal radiation exchange between
the walls of radiation enclosures and objects inside. There are two types of
radiation surface components — one for uniform temperature surfaces and one
for distributed temperature surfaces. Then there are several components that
represent the various possible view configurations between the surfaces — the
fraction of radiation emitted from one surface reaching the other. Radiation
between two surface components is modeled by connecting them to a common
view configuration component. Each radiation surface is connected this way
to all the other radiation surfaces in the enclosure with which it exchanges
radiation — one view configuration component for each surface-to-surface view.

26.1 Sample Radiation Enclosures

Before getting into the details of specific radiation exchange model components
you might want to take a look at some representative examples of radiation en-
closure submodels that you can cut and paste into your own models and revise
and expand accordingly. The examples are found in the Apps\SCFusion\Samples\-
RadiationEnclosures sub-directory under the installation directory. Each Sage
model file has a companion document in pdf format. There are examples for ra-
diation between the ends of a cylindrical can, radiation shields (nested-spherical
and stacked-disk) and radiation from a cold finger to a surrounding cylindrical
enclosure.

You can use the copy-and-paste function of Sage’s Edit menu (or the tool
buttons) to copy model components from the sample files into your data file.
You can only copy single, disconnected, model components this way (although
any child components are copied too). After you copy a model component you
have to first open the model you wish to paste it into. It is not possible to copy
and paste between two separate Sage applications using the Windows clipboard.

319

320 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

26.2 Radiation Surface Components

Radiation surface components define emissivity and surface area without speci-
fying anything about the geometrical shape of the surface. Inputs and outputs
common to all radiation surface components are:

A : (real, m2) Surface area emitting or absorbing radiation.

Emiss : (real, dimensionless) Gray-body emissivity ε. A number between 0 and
1. ε = 1 for an ideal black body. ε ≈ 0 for a silvered surface. The surface
is assumed to emit and reflect radiation diffusely with reflectivity equal to
emissivity.

Fself : (real, W) Self view factor (Fii, where i is the surface index) implied by
all the radiation connections of the model. A diagnostic output. A posi-
tive value is normal for concave surfaces (e.g. the outer of two concentric
spherical surfaces) where one part of the surface can see another part. A
positive value for a flat or convex surface implies that not all the radiation
leaving that surface is arriving at other surfaces of your model. That may
be acceptable if Fself is small or the neglected radiation is going to surfaces
at the same temperature where radiation exchange is irrelevant. A nega-
tive value implies some of the radiation leaving the surface is accounted
for twice. That may be acceptable if Fself is small.

Br : (real, W/m2) Surface radiosity B. The outgoing radiation intensity for
combined emitted and reflected radiation — reflected from all other con-
nected radiation surface components.

Rad : (real, W) Incoming radiation heat load as a result of radiation exchange
with other radiation surface components.

Radiation surface components are designed to solve the surface temperature
from an energy balance principle. But there are times when you will want to
anchor the temperature of a radiation surface at some value. You can do this by
connecting the radiation surface to another thermal solid in your model with a
thermal conduction connection. In order to inherit the ability to make thermal
conduction connections radiation surface components descend from the heat
source components of chapter 17.

26.2.1 Lumped Radiation Surface

TStdyRsurf

Lumped radiation surfaces assume the entire surface temperature is uniform at
a single temperature and define these additional outputs:

Ts : (real, K) Lumped surface temperature T .

QNeg : (real, W) Net conductive heat flow through negative-facing heat-flow
connections.

26.2. RADIATION SURFACE COMPONENTS 321

QPos : (real, W) Net conductive heat flow through positive-facing heat-flow
connections.

These variables are inherited from the point heat source component of chap-
ter 17 except that Ts is overridden as a solved variable instead of an input.
Temperature is solved so that the net energy flow from combined radiation and
conduction is zero.

Thermal Attachments

Lumped radiation surface components include attachments for positive-facing
and negative facing thermal radiation flows as well as attachments for conductive
heat flows:

Icon Purpose

steady negative-facing radiation flow

steady positive-facing radiation flow

steady negative-facing conductive heat flow

steady positive-facing conductive heat-flow

Create as many as you need. Then move the connection arrows up one level and
connect them to the view-configuration components or temperature sources in
your model.

Positive and negative facing radiation flows are understood as attached to
the same radiation surface rather than a the opposite sides of a wall. Both
view directions are available to facilitate the multiple connections required in a
typical radiation enclosure.

26.2.2 Distributed Radiation Surface

TGxRsurf

Distributed radiation surfaces assume the surface has a temperature distribution
along its length. The length of the surface comes from the parent component
under which a distributed temperature radiation surface always resides. The
parent component may be a canister, duct, matrix annular gap, generic cylinder
or parallel container. Use of this component is illustrated in the example model
RadColdFinger.ltc.

Distributed temperature radiation surfaces employ a simplified model of ra-
diation heat transfer that neglects the variation in view factors along the surface.
This is generally only appropriate when the surface length (in the direction of
the temperature distribution) is small compared to the distance separating the
subdivided surface from other surfaces of the radiation enclosure. (see section

322 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

26.4.3) for more details. Distributed temperature radiation surfaces define these
additional outputs:

Te : (real, K) Effective surface temperature T .

QyNeg : (real, W) Net conductive heat flow through negative-facing heat-flow
connections.

QyPos : (real, W) Net conductive heat flow through positive-facing heat-flow
connections.

QyNeg and QyPos are inherited from the line heat source component of chapter
17. Te is new. It is the effective radiation temperature defined by equation
(26.30) below that gives the same radiation heat transfer as the distributed
surface temperature.

Thermal Attachments

Distributed radiation surface components include attachments for positive-facing
and negative facing thermal radiation flows as well as attachments for conduc-
tive heat flows:

Icon Purpose

steady negative-facing radiation flow

steady positive-facing radiation flow

space-grid negative heat-flow face

space-grid positive heat-flow face

The radiation flow connectors are actually identical to those used for lumped-
temperature surfaces. So it is possible to interchangeably connect the same view
configuration components to either lumped or distributed-temperature radiation
surfaces.

Meaning of Distributed Temperature

The surface temperature Ts(x) is discretized on a spatial grid and solved ac-
cording to an energy balance principal:

qc + qr = 0

where qc is the thermal conduction heat flux (W/m) of all heat-flow face at-
tachments and qr is the radiation heat flux of all radiation flow attachments.

26.3. VIEW-CONFIGURATION COMPONENTS 323

The radiation flow attachments do not actually support a distributed radiation
flux to other surfaces. Rather they supply only a total heat flux over the entire
surface according to its effective radiation temperature Te. The radiation heat
flux is localized internally according to equation (26.31) below.

26.3 View-Configuration Components

View configuration components represent the geometry of the two adjoining
radiation surfaces as well as their relative orientation in space. There are view-
configuration components for a selected number of common cases. Inputs and
outputs common to all view configurations are:

FAmult : (real, dimensionless) Empirical multiplier that can be used to scale
the default view area FA to account for radiation blocked by other surfaces
or differences between actual surfaces and the perfect geometrical shapes
assumed in view configuration theory.

FA : (real, m2) View area FnpAn or FpnAp. The product of an internal calcu-
lation and FAmult.

BrNeg : (real, W/m2) Radiosity Bn of negative view.

BrPos : (real, W/m2) Radiosity Bp of positive view.

RadNeg : (real, W) Radiation flow Rnet− negative view

RadNeg : (real, W) Radiation flow Rnet+ positive view

AEQ : (real, W) Available energy loss to radiation heat flow.

Mandatory Surface Component Connections

All view configuration components contain built-in negative-facing and positive-
facing radiation connectors for mandatory connection to radiation surface com-
ponents.

26.3.1 Generic Configuration

TrcGeneric

If none of the specific view configurations below are appropriate you can define
you own view factor with this component. Variable FA is an input rather than
output with the intent that you will recast it as an expression involving one or
both of the output variables:

An : (real, m2) Area An of radiation surface connected across negative bound-
ary.

Ap : (real, m2) Area Ap of radiation surface connected across positive boundary.

324 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

For example if half of the radiation leavingAn reaches Ap then you would recast
FA as the expression 0.5 * An. It is always possible to express the view area
FA as a function of Anand Ap as the view configurations below demonstrate.
You may formulate any required parameters besides An and Ap as user-defined
inputs. Use of this component is illustrated in the example model RadGeneric.ltc.

26.3.2 Planar Elements

TrcPlanar-
Elmts

Two planar elements An and Ap separated by distance s with angles θn and
θp between surface normals and the view direction. The surface of element An

exchanges radiation with the surface of element Ap :

An

Ap

s

qn

qp

This is the differential basis for all finite area view factors. It is found in
Sparrow and Cess [63] and example A-1 posted at www.me.utexas.edu/~howell/
sectionc/A-1.html. The FA product (either FnpAn or FpnAp is

FA =
An cos θnAp cos θp

πs2
(26.1)

Strictly speaking this equation applies only to infinitesimal planar elements
An and Ap but is a reasonable approximation whenever their dimensions are
small compared to the separation distance s. The shape of the planar elements
is irrelevant. The normal angles and separation distance are inputs for this
configuration:

ThetaN : (real, radians) angle θn between An surface normal and view direction.

ThetaP : (real, radians) angle θp between Ap surface normal and view direction.

Sepr : (real, m) separation distance s between planar elements.

Surface areas An and Ap come from the radiation surfaces connected to the
negative-facing and positive-facing views respectively.

26.3. VIEW-CONFIGURATION COMPONENTS 325

26.3.3 Concentric Spheres

TrcConcSphNP

TrcConcSphPN

Two concentric spheres. The outer surface of an inner sphere A1 exchanges
radiation with the inner surface of the outer sphere A2:

A1

A2

As reported in example 31 on p. 790 of [62] view factor F12 = 1 and view factor
F21 = A1/A2. In other words all of the radiation leaving surface A1 reaches
A2 (obviously) but only the fraction A1/A2 of the radiation leaving surface A2

reaches A1 (from reciprocity condition F12A1 = F21A2). The fact that all the
radiation from the inner sphere reaches the outer is true even if the spheres are
not concentric. So these view factors apply to the case of non-concentric spheres
too, so long as one is completely contained in the other.

In the Sage implementation there are two separate components, a NP con-
figuration and a PN configuration. In the NP configuration the inner surface is
presumed to be surface An connected to the negative-facing view and the outer
surface Ap connected to the positive facing view, as indicated in the component
icon. In the PN configuration the roles are reversed.

There are no input variables for concentric sphere configurations other than
the inherited FAmult of all configurations. The areas A1 and A2 are imported
from the radiation surfaces across the connection. View area output FA is
calculated as F12A1 = A1 (which has the same value as F21A2). For the two
cases the FA product is

FA =

{
An NP configuration
Ap PN configuration

(26.2)

26.3.4 Separated Spheres

TrcSeprSph

Two spheres separated by distance s. The surface of sphere An exchanges
radiation with the surface of sphere Ap :

An
Ap

s

326 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

This case corresponds to example C-137 posted at www.me.utexas.edu/~howell/
sectionc/C-137.html. An approximate formulation for the FA product (either
FnpAn or FpnAp is

FA =

(

1 −
√

1 − An

Y

)(

1 −
√

1 − Ap

Y

)

Y (26.3)

where

Y =
(√

4πs+
√

An +
√

Ap

)2

This approximation derived by J.D. Felske [12] applies to all sphere spacings
and has a worst-case error of 5.8% when the spheres are touching (s = 0). The
separation distance is an input for this configuration:

Sepr : (real, m) separation distance s between closest points.

Surface areas An and Ap come from the radiation surfaces connected to the
negative-facing and positive-facing views respectively.

26.3.5 Parallel Disks

TrcParallDsk

Two parallel coaxial disks separated by distance s. The surface of disk An

exchanges radiation with the surface of disk Ap :

An

Ap

s

This case corresponds to example C-41 posted at www.me.utexas.edu/~howell/
sectionc/C-41.html. The FA product (either FnpAn or FpnAp is

FA =
1

2

(

Y −
√

Y 2 − 4AnAp

)

(26.4)

where
Y = πs2 +An + Ap

The separation distance is an input for this configuration:

Sepr : (real, m) normal separation distance s between disks.

Surface areas An and Ap come from the radiation surfaces connected to the
negative-facing and positive-facing views respectively.

26.3. VIEW-CONFIGURATION COMPONENTS 327

26.3.6 Disk to Inside of Cylinder with Same Radius

TrcDskCylNP

TrcDskCylPN

A right circular cylinder of radius r and height h separated by distance s from
a coaxial disk of the same radius. The inner cylindrical surface A1 exchanges
radiation with the disk surface A2:

A1

A2

r

h

s

This case corresponds to example C-81 posted at www.me.utexas.edu/~howell/
sectionc/C-81.html. The F12A1 product is

F12A1 =
A1

4

[(

1 +
H2

H1

)
√

4 + (H1 +H2)2 − (H1 + 2H2)

−H2

H1

√

4 +H2
2

]

(26.5)

where H1 and H2 are defined as

H1 =
h

r

H2 =
s

r

In the Sage implementation there are two separate components, a NP configu-
ration and a PN configuration. In the NP configuration the base is presumed to
be surface An connected to the negative-facing view and the cylindrical surface
Ap connected to the positive facing view, as indicated in the component icon.
In the PN configuration the roles are reversed. The separation distance is an
input for this configuration:

Sepr : (real, m) separation distance s between disk and cylinder.

The areas An and Ap imported from the radiation surfaces across the connection
determine cylinder radius and height as

r =

{ √

An/π NP configuration
√

Ap/π PN configuration

and

h =

{
Ap/(2πr) NP configuration
An/(2πr) PN configuration

328 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

26.3.7 Inside of Cylinder to Disk Within Base or Top

TrcEndCylNP

TrcEndCylPN

A disk of radius r1 within the base or top of a right circular cylinder of radius r2
and height h. The disk surface A1 exchanges radiation with the inner cylindrical
surface A2:

A1 A2

h

r2

r1

This case corresponds to example C-80 posted at www.me.utexas.edu/~howell/
sectionc/C-80.html. The F12A1 product is

F12A1 =
A1

2

[

1 − R2 −H2 +
√

(1 +R2 +H2)2 − 4R2
]

(26.6)

where R and H are defined as

R =
r2
r1

H =
h

r1

In the Sage implementation there are two separate components, a NP configu-
ration and a PN configuration. In the NP configuration the disk is presumed to
be surface An connected to the negative-facing view and the cylindrical surface
Ap connected to the positive facing view, as indicated in the component icon. In
the PN configuration the roles are reversed. The cylinder diameter is an input
for this configuration.

Dcyl : (real, m) cylinder diameter 2r2.

The areas An and Ap imported from the radiation surfaces across the connection
determine disk radius and cylinder height as

r1 =

{ √

An/π NP configuration
√

Ap/π PN configuration

and

h =

{
Ap/(2πr2) NP configuration
An/(2πr2) PN configuration

26.3. VIEW-CONFIGURATION COMPONENTS 329

26.3.8 Collinear Cylinders

TrcColinCyl

Two collinear right circular cylinders of inner radius r separated from each other
by a distance s. The inside surface An of one cylinder exchanges radiation with
the inside surface Ap of the other:

An Ap

r

s

This case corresponds to example C-87 posted at www.me.utexas.edu/~howell/
sectionc/C-87.html. The FA product (either FnpAn or FpnAp is

FA =
2πr2

4

[
2AnAp

(2πr2)2
+G

(
An + 2πrs

2πr2

)

+G

(
Ap + 2πrs

2πr2

)

−G
(
An +Ap + 2πrs

2πr2

)

−G
(s

r

)]

(26.7)

where G is the function defined by

G(x) ≡ x
√

x2 + 4

The cylinder diameter and separation distance are inputs for this configuration:

Dcyl : (real, m) Cylinder internal diameter (2r).

Sepr : (real, m) Separation gap (s).

Areas An and Ap come from the radiation surfaces connected to the negative-
facing and positive-facing views respectively.

330 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

26.3.9 Coaxial Cylinders of Same Height

TrcCoaxCylNP

TrcCoaxCylPN

Two coaxial right circular cylinders of radius r1 and r2 (r1 < r2) with the same
height h. The inner cylindrical surface A1 exchanges radiation with the outer
cylindrical surface A2:

A1

A2

h

r2

r1

This case corresponds to example C-92 posted at www.me.utexas.edu/~howell/sectionc/C-
92.html. The F12A1 product is

FA = 2h2

[
1

2
(R2

2 − R2
1 − 1) arccos

(
R1

R2

)

+ πR1 −
π

2
AB

−2R1 arctan

(√

R2
2 −R2

1

)

+
√

(1 + A2)(1 +B2) arctan

(√

(1 +A2)B

(1 +B2)A

)]

(26.8)

where R1, R2, A and B are defined as

R1 =
r1
h

R2 =
r2
h

A = R2 + R1

B = R2 − R1

In the Sage implementation there are two separate components, a NP config-
uration and a PN configuration. In the NP configuration the inner cylindrical
surface is presumed to be surface An connected to the negative-facing view and
the outer cylindrical surface Ap connected to the positive facing view, as indi-
cated in the component icon. In the PN configuration the roles are reversed.
The cylinder height is an input for this configuration.

Hcyl : (real, m) cylinder height h.

The areas An and Ap imported from the radiation surfaces across the connection
determine the cylinder radii as

r1 =

{
An/(2πh) NP configuration
Ap/(2πh) PN configuration

26.3. VIEW-CONFIGURATION COMPONENTS 331

and

r2 =

{
Ap/(2πh) NP configuration
An/(2πh) PN configuration

26.3.10 Offset Cylinders of Different Diameter

TrcOffsetCylNP

TrcOffsetCylPN

Two coaxial right circular cylinders of radius r1 and r2 (r1 < r2) and heights
h1 and h2 offset by distance s. The outside surface A1 of the smaller cylinder
exchanges radiation with the inside surface A2 of the larger cylinder:

A2

h2

r2

A1

r1

h1

s

This case corresponds to example C-98 posted at www.me.utexas.edu/~howell/
sectionc/C-98.html. The F12A1 product is

FA =
A1

L
(fF (L +D) + fF (Y +D) − fF (D) − fF (L +D)) (26.9)

where D, Y , L and R are defined as

D =
s

r2

Y =
h2

r2

L =
h1

r2

R =
r1
r2

and function fF is defined as

fF (x) =
fB(x)

8R
+

1

2π

[

x arccos

(
fA(x)

fB(x)

)

332 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

−1

2

√
√
√
√

((
fA(x) + 2

R

)2

− 4

)

arccos

(
fA(x)R

fB(x)

)

−fA(x)

2R
arcsin(R)

]

where

fA(x) = x2 +R2 − 1

fB(x) = x2 −R2 + 1

In the Sage implementation there are two separate components, a NP configu-
ration and a PN configuration. In the NP configuration the smaller cylindrical
surface is presumed to be surface An connected to the negative-facing view and
the larger cylindrical surface Ap connected to the positive facing view, as indi-
cated in the component icon. In the PN configuration the roles are reversed.
The cylinder diameters and separation are inputs for this configuration.

DcylInner : (real, m) smaller cylinder external diameter 2r1.

DcylOuter : (real, m) larger cylinder internal diameter 2r2.

Sepr : (real, m) Separation gap (s).

The areas An and Ap imported from the radiation surfaces across the connection
determine the cylinder heights as

h1 =

{
An/(2πr1) NP configuration
Ap/(2πr1) PN configuration

and

h2 =

{
Ap/(2πr2) NP configuration
An/(2πr2) PN configuration

26.3. VIEW-CONFIGURATION COMPONENTS 333

26.3.11 Outside of Cylinder to Offset Disk with Larger
Radius

TrcCylDskNP

TrcCylDskPN

A right circular cylinder of radius r1 and height h separated by distance s from
a coaxial disk of larger radius r2. The outer cylindrical surface A1 exchanges
radiation with the disk surface A2:

A1

A2

r1

h

s

r2

The case for zero separation distance (s = 0) corresponds to example C-77
posted at www.me.utexas.edu/~howell/sectionc/C-77.html. For that case the
F12A1 product is

F12A1 =
πr22B

4
+ r1h

{

arccos

(
A

B

)

− 1

2H

√
(

(A+ 2)2

R2
− 4

)

arccos

(
AR

B

)

− A

2RH
arcsinR

}

(26.10)

where

R =
r1
r2

H =
h

r2

A = H2 + R2 − 1

B = H2 − R2 + 1

For nonzero separation distance (s > 0) Sage calculates F12A1 as the comple-
ment to the sum of other view factors (e.g. according to equation (26.19)).
Imagine the disk in the drawing above is extended to form the inside surface of
a complete can by adding a disk of the same diameter resting on the top edge
of the cylinder and a cylinder between the outer edges of the two disks. All
the radiation leaving the inner cylinder reaches the inside surface of this can.

334 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

The view factor for the inner cylinder to the top disk is given above. The view
factors for the inner cylinder to the outer cylinder (divided into two pieces of
heights h and s are given in sections 26.3.9 and 26.3.10. The view factor to the
lower disk in question is the remainder.

In the Sage implementation there are two separate components, a NP con-
figuration and a PN configuration. In the NP configuration the cylinder is
presumed to be surface An connected to the negative-facing view and the disk
surface Ap connected to the positive facing view, as indicated in the component
icon. In the PN configuration the roles are reversed. The cylinder diameter and
disk-to-cylinder separation are inputs for this configuration.

Dcyl : (real, m) cylinder diameter 2r1.

Sepr : (real, m) separation distance s between cylinder and disk.

The areas An and Ap imported from the radiation surfaces across the connection
determine disk radius and cylinder height as

r2 =

{ √

Ap/π NP configuration
√

An/π PN configuration

and

h =

{
An/(2πr1) NP configuration
Ap/(2πr1) PN configuration

26.4 Radiation Exchange Theory

Sparrow and Cess [63] discuss the physics of radiation exchange between gray
surfaces within enclosures. The formulation in this section is essentially the same
except presented in a way consistent with Sage’s implicit solution scheme. The
formulation considers radiation exchange in an enclosure having N surfaces with
areas Ai, emissivities εi and temperatures Ti. In a Sage model these variables
are distributed among the radiation surface components of the model and the
solution equations are likewise distributed. Key assumptions are:

absorptivity = emissivity The coefficients of emission ε and absorption α
are equal.

diffuse outgoing radiation The emitted and reflected radiation from each
surface is diffusely distributed.

uniform incident radiation The incident radiation on any surface from an-
other is uniformly distributed.

26.4.1 Net Surface Radiation Heat Transfer

The sketch below shows a gray surface with total incoming radiation (per unit
area)Hi. The outgoing radiation is the reflected amount (1−εi)Hi plus the emit-
ted radiation εiσT

4
i , where σ = 5.66961E–8 W/(m2K4) is the Stefan-Boltzmann

26.4. RADIATION EXCHANGE THEORY 335

constant. The symbol Bi denotes the radiosity, the combined emitted plus re-
flected radiation.

Hi e si T
4

i

surface i

(1-ei) Hi

Bi

{

Aiei Hi

The net rate of heat loss QRi from a surface Ai is formulated in general as the
difference between emitted radiation εiσT

4
i Ai and the absorbed portion of the

incident radiation εiHiAi

QRi = εi
(
σT 4

i Ai −HiAi

)
(26.11)

The incident radiation is the total amount that arrives from all the surfaces in
the enclosure (including radiation from Ai to itself).

HiAi =

N∑

j=1

BjFjiAj (26.12)

where Bj is the radiosity emitted from surface j and Fji is the fraction of
radiation emitted from surface j reaching surface i — the view factor. Radiosity
will be considered more below but for now substituting equation (26.12) forHiAi

in equation (26.11) gives

QRi = εi

σT 4
i Ai −

N∑

j=1

BjFjiAj

 (26.13)

This constitutes N of the 2N equations required for solving the unknowns Bi

and either Ti or QRi (depending on which is unknown for a given surface).
The other N equations come from the definition of radiosity Bi as the emitted
radiation per unit area plus the reflected part of the incident radiation per unit
area

Bi = εiσT
4
i + (1 − εi)Hi (26.14)

Multiplying through by Ai (to convert the left-hand side to total emitted radi-
ation) and again substituting equation (26.12) for HiAi the previous equation
may be written

BiAi = εiσT
4
i Ai + (1 − εi)

N∑

j=1

BjFjiAj (26.15)

336 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

It will be helpful to isolate the Ti and Bj terms into separate equations by
multiplying equation (26.13) by (1 − εi)/εi and adding to equation (26.15) to
get

BiAi = σT 4
i Ai −

1 − εi
εi

QRi (26.16)

then subtracting equation (26.13) from equation (26.15) to get

QRi = BiAi −
N∑

j=1

BjFjiAj (26.17)

The previous equation can be put into terms of the radiosity exchange between
surfaces by writing

∑N
j=1 BjFjiAj as BiFiiAi +

∑

j 6=i BjFjiAj giving

QRi = (1 − Fii)BiAi −
∑

j 6=i

BjFjiAj (26.18)

A full accounting of the radiation leaving surface i requires that

N∑

j=1

Fij = 1 (26.19)

In English, all the radiation emitted from surface i goes to other surfaces or
itself. So one may replace the term (1− Fii) in equation (26.18) with

∑

j 6=i Fij

to obtain
QRi =

∑

j 6=i

BiFijAi −
∑

j 6=i

BjFjiAj (26.20)

Equations (26.16) and (26.20) are the basis for the Sage solution scheme de-
scribed next.

26.4.2 Sage Solution Scheme

It is convenient to write the individual terms BiFijAi and BjFjiAj appearing
in the right-hand side of equations (26.20) using single symbols

Rij ≡ BiFijAi (26.21)

Rji ≡ BjFjiAj (26.22)

Rij is understood as the radiosity emitted from surface Ai that reaches surface
Aj and vice-versa. In terms of Rij and Rji equation (26.20) becomes

QRi =
∑

j 6=i

(Rij −Rji) (26.23)

The radiation terms Rij − Rji (for j 6= i) are what flow through radiation
connectors. They are solved implicitly according to the principle that the ra-
diosity B is continuous across the connection. The following diagram represents

26.4. RADIATION EXCHANGE THEORY 337

the Sage solution scheme for two area elements An and Ap connected by a
view-configuration element. The symbol Rnet denotes the net radiation flow
Rnp −Rpn.

A

T
n

n

Bn

A

T
p

p

Bp

Rnet

surface n surface pview configuration

Bn
Bp

FA
Bmid

Rnet

Radiation Surface Components

In the surface components An and Ap are inputs and Tn, Tp, Bn, Bp are solved.
Tn and Tp are solved implicitly from the component energy balance. For exam-
ple, the equation for solving Tn is

QRn +Qcond = 0 (26.24)

In English, the net heat loss from radiation balances the net heat loss through
conductive heat flow connections. Sage calculates QRn explicitly from equa-
tion (26.23) where the individual Rnj − Rjn terms come from the radiation
connections (labeled Rnet in the above drawing) and Qcond comes from any
conventional conductive heat transfer connections to the surface. Bn and Bp

are solved explicitly from equation (26.16).

View-Configuration Components

In the view-configuration component either FnpAn or FpnAp (whichever is eas-
ier) is calculated explicitly from the areas An and Ap across the connections and
other geometrical inputs. A reciprocity principle requires that FnpAn = FpnAp.
Either represents the effective view area of an imaginary window through which
surfaces An and Ap see each other. Calculating only one simplifies things and
also eliminates the possibility that FnpAn might not equal FpnAp due to pro-
gramming error.

View configurations also enforce the requirement that the net radiation flows
Rnet imported from the radiation connections at each end are equal and related
to the difference in radiosities across the connections by

(Bn − Bp)FA = Rnet (26.25)

This equation comes from the definitions (26.21) and (26.22) and by substituting
FA for either FnpAn or FpnAp. In this form the electrical circuit analogy for
radiation heat transfer is clear. Radiation exchange Rnet is like an electrical
current driven by a voltage difference Bn − Bp across a resistance 1/FA. Or
maybe more appropriately a thermal resistance analogy where Rnet is like a heat
flow driven by a temperature difference Bn − Bp across a thermal resistance

338 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

1/FA. At any rate view configurations calculate a somewhat fictitious but
useful midpoint radiosity (think temperature) Bmid implicitly according to

Rnet+ − Rnet− = 0 (26.26)

where Rnet+ is the radiation flow imported from the connector to surface Ap

and similarly for Rnet−. Enforcing this equation has the effect of forcing the
radiation flows to be the same at both ends. Then to insure that equation
(26.25) is satisfied view configurations calculate Bn and Bp explicitly according
to

Bp = Bmid − 1

2

Rnet+

FA
= 0 (26.27)

Bn = Bmid +
1

2

Rnet−

FA
= 0 (26.28)

Self Radiosity

The radiosity emitted from a surface Ai that reaches itself (BiFiiAi) does not
matter to the overall energy balance of surface i but it is nonetheless important
to consider. The self view factor Fii could be an explicit input for surface
components but it is more convenient to evaluate it indirectly from the radiation
accounting principle (26.19) which implies that it must be

Fii = 1 −
∑

j 6=i

Fij (26.29)

In other words, Fii is determined from all the view factors by which Ai sees
the other surfaces of your model. Doing it this way means that if you fail to
properly include all the radiation connections of a radiation enclosure the error
will show up as more or less than the correct amount of self radiation. The
implied self view factor Fii is the output Fself for radiation surface components.
Keeping an eye on it can help you diagnose problems with your radiation model.
It should be zero for a flat or convex surface and greater than zero only for a
concave surface. Never negative.

26.4.3 Distributed Temperature Surface Components

In principle radiation exchange with a surface having a temperature distribution
rather than a uniform temperature can be modeled by subdividing that surface
into small pieces where the temperature is nearly uniform on each piece. But
modeling the radiation transfer grows complicated quickly because each piece
typically sees the other surfaces of the enclosure with a different view factor.
So if there are N subdivisions there are N view factors required for each of
the other surfaces of the radiation enclosure. Not to mention the view factors
among the subdivided pieces themselves.

But when the conditions listed below are satisfied modeling radiation ex-
change with a distributed-temperature surface can be greatly simplified.

26.4. RADIATION EXCHANGE THEORY 339

Uniform emissivity The emissivity is uniform over the surface.

Convex surface No two pieces of the subdivided surface see each other.

Uniform view factors The view factors from the subdivided surface elements
to other surfaces of the radiation enclosure are all the same.

These are the assumptions underlying Sage’s distributed radiation surface com-
ponent. A necessary condition for the validity of the last assumption is that
the surface length (in the direction of the temperature distribution) is small
compared to the distance separating the subdivided surface from other surfaces
of the radiation enclosure. For example, the subdivided outer surface of a rela-
tively short small diameter cylinder exchanging radiation with the inner surface
of a larger coaxial cylinder.

To the extent the above assumptions are valid a subdivided surface Ae with
equal area elements Ai and temperatures Ti (i = 1..N) has the same radiation
heat transfer characteristics as the original surface at the effective temperature
Te provided that

T 4
e =

1

N

N∑

i=1

T 4
i (26.30)

And the radiation heat transfer QRi to an individual element Ai is related to
the radiation heat transfer QRe to the lumped surface Ae by

QRi =
1

N

(
Qre − εeσAe(T

4
e − T 4

i)
)

(26.31)

Two-Surface Case

The above equations are most easily derived for the case where lumped surface
Ae exchanges heat with only one other surface Ax, as illustrated here:

Lumped

Subdivided

A ,Te e
Ax

A ,T1 1

Ax

A ,TN N

Applying equation (26.13) to the lumped case gives the radiation heat transfer
to surface Ae as the sum of emitted plus incoming radiation

QRe = εe
(
σT 4

eAe −BxFxeAx

)
(26.32)

340 CHAPTER 26. RADIATION EXCHANGE COMPONENTS

where the assumption that Fee = 0 (no self view) has been used to simplify the
last term on the right side. Applying equation (26.13) to the subdivided case
gives the radiation heat transfer to each of the surfaces Ai as

QRi = εi
(
σT 4

i Ai −BxFxiAx

)
(26.33)

where this time the no-self-view assumption Fji = 0, j = 1..N has simplified
the last term on the right side. The previous equation can be further simplified
by requiring that Ae be subdivided into equal area pieces with Ai = Ae/N and
using the assumptions of uniform emissivity and view factors in the form εi = εe
and Fxi = Fxe/N (radiation from Ax to Ae distributed uniformly among the
Ai). Under these assumptions the previous equation becomes

QRi =
1

N
εe
(
σT 4

i Ae −BxFxeAx

)
(26.34)

The total radiation heat transfer to all the subdivided surfaces is found by
summing equation (26.34)

N∑

i=1

QRi = εe

(

σ

[

1

N

N∑

i=1

T 4
i

]

Ae −BxFxeAx

)

(26.35)

By comparing this equation with equation (26.32) it is clear that the total radi-
ation heat transfer to the subdivided surfaces will be the same as the radiation
heat transfer for the lumped case provided the lumped temperature Te satisfies
equation (26.30). Eliminating the common term BxFxeAx between equation
(26.34) and equation (26.32) gives the above formula (26.31) for the individual
radiation heat transfers in terms of the lumped heat transfer.

The radiation leaving the lumped or divided surfaces and reaching surface
Ax is the same in either case. The reflected radiation is the same because of
the uniform emissivity assumption (εi = εe). The emitted radiation is the same

(e.g. εeσT
4
e Ae = εe

∑N
i=1 σT

4
i Ai), again by choice of Te.

General Case

The general case where surface Ae exchanges radiation with multiple surfaces
may be derived similarly by replacing surface Ax in the above analysis with
M surfaces Ak : k = (N + 1)..(N + M) (the k indices start with N + 1 to
avoid confusion with the indices for the subdivided surfaces Ai : i = 1..N). The
term BxFxeAx appearing in equations (26.32) and (26.34) is now replaced with
∑

k BkFxeAk which cancels as before and leads to the same conclusions about
equivalent bulk temperature Te and individual radiation heat transfers.

Chapter 27

Submodels and Containers

The components in this section allow you to group other model components
together under a separate window.

27.1 Submodels

TSCFusion-
Submodel

A submodel allows you to create all the child model components available in the
root model, except organized one level deeper in the model tree and displayed in
a separate window. This is handy for organizing large models, multi-stage mod-
els, managing display screen clutter and copy/pasting of groups of components
simultaneously. You may promote connector arrows from within a submodel
up to the root model level for connection there to other submodels or model
components at the root level.

All of the input variables of the root model are inherited by a submodel and
passed to any child model components created within the submodel. There are
no new input or output variables introduced by a submodel. So whether or not
a model component resides at the root level or in a submodel does not affect
the model solution.

Using the cut and paste tools it is possible to move model components from
the root model to a submodel and vice-versa. So long as the model component
is not externally connected.

27.2 Containers

Container components are similar to submodel components except not all child
components available in the root model are available in the container and new
input variables are introduced.

The main reason for the existence of containers is to support heat exchanger
modeling. For example, you might want to model the transverse heat flow (dis-
tributed between y-faces) between separate heat-exchanger components repre-
senting the two legs of a counterflow heat exchanger. Sage normally does not

341

342 CHAPTER 27. SUBMODELS AND CONTAINERS

allow this because the components might have different lengths, which would
require the heat flux value (W/m) to change discontinuously across the bound-
ary.

There are two ways to escape Sage’s normal restrictions against such inter-
component heat-flow connections. The first is create the components together
within a parallel container. The second is to create them within a multi-length
container.

Sample model HeatExchangers-CounterflowRecuperative in the Apps\SCFusion\-
Samples\ElementsThermoModels sub-directory under the installation directory
gives specific examples of interconnected equal-length and different-length heat
exchangers.

27.2.1 Parallel Container

TSCFCon-
tainer

A parallel container defines a common length, number of computational cells
(NCell) and initial temperature distribution (Tinit) inherited by all child com-
ponents. Any canister or heat-exchanger child components created within the
parallel container inherits these same values. This permits you to make trans-
verse heat-transfer connections from the thermal solid components within the
canisters or heat exchangers by promoting their connector arrows to a common
level and connected them.

The only variables in parallel containers are the following inputs:

NCell : (dimensionless) The number of spatial nodes in the computational grids
of all underlying model components having such grids.

Length : (real, m) Common length of all underlying model components.

Tinit : (cubic spline, W) Axial temperature distribution T (x) where x = 0 is
the negative endpoint and x = 1 is the positive endpoint. Underlying
model components use Tinit as a fixed boundary condition or just an
initial value, depending on whether the temperature of the component is
fixed or solved.

Many of the model components in the root-level child-model creation palette
are available in the parallel-container palette, except for moving parts and other
components where the concept of length is undefined. In particular, canisters,
heat exchangers, and composite (piston/cylinder) components are available.
Also available are the line heat source and distributed conductor components.
A line heat source may be used to provide temperature boundary conditions
to other components defined within the parallel container. The temperature so
provided is that defined by the Tinit input variable of the parallel container.
A distributed conductor may be used to provide a solid conduction path be-
tween other components. In either case the thermal connections are made via
Gx heat-flow connections of negative or positive heat flow faces available on the
Thermal Attachments page of the components to be connected.

27.2. CONTAINERS 343

27.2.2 Multi-Length Container

TSCFMLCon-
tainer

A multi-length container permits a different approach to transverse heat-flow
connections, the result of which is to allow different-length components to be
connected together. You might want to do this, for example, to connect together
the walls of a tube spiral-wrapped around a straight central tube, as the iconic
representation suggests. A special heat-flux transformer component, available in
the basic page of the multi-length container child-model creation palette makes
this possible (see below). Any components created as child models of a multi-
length container can be interconnected via heat-flux transformers.

A multi-length container defines a number of computational cells (NCell)
and initial temperature distribution (Tinit) that are inherited by all child com-
ponents. It is similar to the above parallel container except that a common
length is not defined. The only variables in parallel containers are the following
inputs:

NCell : (dimensionless) As above.

Tinit : (cubic spline, W) As above.

Heat-Flux Transformer

TGxQtrans-
former

A heat-flux transformer is the essential component available within a multi-
length container for making transverse heat flow connections between compo-
nents of different length. It overrides Sage’s usual connection compatibility test
and permits you to inter-connect thermal solids within any two heat exchangers
(conductors or quasi-adiabatic surfaces) by connecting their negative or positive
heat flow arrows to one of its two built-in connector arrows, via Gx or Gxt y-face
heat-flow connections.

A heat-flux transformer works by changing the heat flux value (W/m) from
one face to the other by the ratio of lengths for the two interconnected thermal
solids. This conserves the total heat energy flow (W) across the boundary. The
actual implementation does this by way of a temperature grid whose values are
defined implicitly by the following energy equation.

QnLn = QpLp (27.1)

where Qn and Qp denote the heat fluxes at the negative and positive y-face
boundaries and Ln and Lp are the lengths of the components connected across
the two boundaries.

Warning about Convergence and Energy Conservation

A heat-flux transformer is designed to be interconnected only to components
created within a multi-length container. But there are no software restrictions
enforcing this rule. You can, in principle, connect it between higher-level com-
ponents by promoting connection arrows to a higher level in the model. But if

344 CHAPTER 27. SUBMODELS AND CONTAINERS

you do so there is no guarantee that the solution will converge or that Sage’s
global energy conservation principle will hold.

If the NCell value for the heat flux transformer (inherited from multi-length
container) is greater than for both higher level models then the solution will
not converge. This is because a heat-flux transformer does not correspond to
a physical object. Its defining energy equation only matches up boundary heat
flows. If there are more T’s in the heat-flux transformer grid than Q’s in the
conjoined model grids, there will be too many implicit function elements to
satisfy simultaneously, given number of Q’s available to do so. (This would not
be a problem if there were a real solid energy equation present because then the
internal temperature solution could adapt to any boundary condition by way of
appropriate internal energy flows.)

A more subtle problem occurs if the NCell values differ for the two inter-
connected components: Global energy conservation will not hold. Grid interpo-
lation methods, which are used to exchange solution information across connec-
tions, produce numerical truncation errors in the case when NCell values differ.
This leads to slightly differ values for the total heat flow leaving one component
domain and entering the other (

∫

n
Qdx 6=

∫

p
Qdx). Small energy conservation

errors might not seem so bad but there is always the danger that the optimizer
could exploit them and find a way to extract a large amount of “free”energy in
order to boost power or efficiency.

Chapter 28

Material Properties

SCFusion model components specify physical properties for the working gas,
solid materials and electromagnetic materials according to the named material
selected in a list box of options. Sage allows you to access the underlying prop-
erties of the selected material in user-defined expressions and provides utility
programs for modifying material properties or creating new materials.

28.1 Referenceable Properties

Access to physical properties is similar to calling a function in a programming
language. Sage presumes that any arguments passed to these functions are in
current dimensional units (set in the Model Class | Options dialog) and provides
a returned value in current dimensional units. For example, a property function
may require temperature T as an argument. The value of T can be an explicit
numerical constant or another referenceable variable. Numerical constants are
not recommended because they do not change if you change the current dimen-
sional units. For example, the expression Solid.Ks(300) will return the thermal
conductivity at 300 K if the current units for temperature are Kelvin and 300
C if centigrade. To avoid this problem it is better to reference a temperature
whose value automatically changes along with current dimensional units. For
example in a thermal-solid model component, Solid.Ks(TsNeg) will return the
thermal conductivity at the temperature of the negative component boundary.
TsNeg is the built-in output for the temperature at the negative boundary.

Gases

For the gas properties assigned to input Gas defined at the root model level you
may reference:

345

346 CHAPTER 28. MATERIAL PROPERTIES

Gas.T0 Representative temperature (relevant only for
ideal gases).

Gas.Rgas Gas constant R.
Gas.Cp0(T) Zero-pressure limit of specific heat cp0 as a func-

tion of temperature T.
Gas.mu0(T) Zero-pressure limit of viscosity µ0 as a function of

temperature T.
Gas.K0(T) zero-pressure limit of thermal conductivity k0 as

a function of temperature T.
Gas.Vsound(T) Zero-pressure limit speed of sound

√
γ0RTas a

function of temperature T, where γ0 = 1/(1 −
R/cp0)).

Gas.Cp(Rho, T) Specific heat cp as a function of density Rho and
temperature T.

Gas.mu(Rho, T) Viscosity µ as a function of density Rho and tem-
perature T.

Gas.K(Rho, T) Thermal conductivity k as a function of density
Rho and temperature T.

Gas.Prandtl(Rho, T) Prandtl number cpµ/k as a function of density Rho
and temperature T.

Gas.P(Rho, T) Pressure P as a function of density Rho and tem-
perature T.

Gas.s(Rho, T) Mass-specific entropy s as a function of density
Rho and temperature T.

Gas.TBeta(Rho, T) Tβ, where β = (∂v
∂T)P /v is the volumetric expan-

sivity, as a function of density Rho and tempera-
ture T.

Gas.EOSErr(Rho, T) Relative error of equation of state as a function of
density Rho and temperature T (placeholder re-
served for future use).

Gas.Compr(Rho, T) Compressibility Pv/(RT) as a function of density
Rho (1/v) and temperature T.

Gas.v(T, P) Specific volume 1/ρ as a function of temperature
T and pressure P.

Gas.T(Rho, RhoE, U) Temperature T as a function of density Rho,
volume-specific energy density RhoE and flow ve-
locity U.

Gas.RhoE(Rho, T, U) Volume-specific energy density ρe as a function of
density Rho, temperature T and flow velocity U.

The following properties are only relevant for gases defined by a tabular
equation of state.

28.1. REFERENCEABLE PROPERTIES 347

Gas.Tc The temperature Tc above which there is no two-
phase state at any pressure. For a pure fluid this
is the critical temperature. For a fluid mixture
it is the temperature at the critical-condensation
point, known in chemical engineering parlance as
the cricondentherm.

Gas.Rhoc Density ρc corresponding to Tc. For a pure fluid
this is the critical density. For a fluid mixture it
is the density at the critical-condensation point.

Gas.RhoD(T) Dew-point vapor density ρd as a function of tem-
perature T. Valid only for T below Tc where two
phases are possible.

Gas.RhoB(T) Bubble-point liquid density ρb as a function of
temperature T. Same restrictions as RhoDew.

Gas.Qual(Rho, T) Pseudo vapor quality (mass fraction) as a function
of bulk density Rho and temperature T, defined by
equation (15.21) of section 15.1.5.

Gas.CpL(Rho, T) Liquid-phase specific heat cp as a function of den-
sity Rho and temperature T. Valid only for T be-
low Tc and Rho above the dew-point density RhoD
where the liquid phase is present. To access the
vapor-phase specific heat use the inherited identi-
fier Cp(Rho, T). It has no restrictions other than
that T and Rho must be in the tabulated range.
Inside the two-phase region Cp(Rho, T) returns
the vapor-phase value. Outside the two-phase re-
gion it returns the appropriate single-phase value,
which may be either liquid or vapor.

Gas.MuL(Rho, T) Liquid-phase viscosity µ as a function of density
Rho and temperature T. Same restrictions as CpL.

Gas.KL(Rho, T) Liquid-phase thermal conductivity k as a function
of density Rho and temperature T. Same restric-
tions as CpL.

Thermal Solids

For the thermal properties assigned to input Solid within various model compo-
nents you may reference:

Solid.Rhos Density ρs.
Solid.Ks(T) Thermal conductivity ks as a function of temper-

ature T.
Solid.Cs(T) Specific heat cs as a function of temperature T.
Solid.Diffusivity(T) Thermal diffusivity ks/(ρscs) as a function of tem-

perature T.

348 CHAPTER 28. MATERIAL PROPERTIES

Electrical Conductors

For the electrical properties assigned to input Material within various model
components you may reference:

Density mass density ρs (kg/m3)
Rs(T) resistivity σ (Ohm-m) as a function of temperature T

Density is a single value for each material. Rs is defined by a set of cubic spline
data pairs (T, Rs(T)).

Soft ferromagnetic materials

For the soft ferromagnetic properties assigned to input Material within various
model components you may reference the above electrical properties in addition
to:

Mur(T) maximum relative permeability µr (dimensionless)
Jsat(T) saturation magnetic polarization Js (T)
Hcb(T) induction coercive force HcB (A/m)

permanent magnets

For the permanent magnet properties assigned to input Material within various
model components you may reference the above electrical properties in addition
to these properties particular to permanent magnets:

Kjh magnetization curve J(H) shape parameter Kjh (0.5 < Kjh < 1)
Br(T) residual magnetic flux density Br (T) at H = 0
Hcj(T) magnetization coercive force HcJ (A/m)

28.2 Material Property File Utilities

The selection list boxes of named materials for the working gas, thermal solids
and electromagnetic components come from material data files. While there
are enough named materials in these files for many needs, there is the distinct
possibility that you will want to specify some material not available. Anticipat-
ing this, the Sage distribution includes some utilities that allow you to revised
property data for existing materials or add data for new materials.

The default property data files are located in your program directory (default
C:\Program Files (x86)\Gedeon \Sage x\Apps), under the following filenames.

filename material type
gasSCF.dta gases
solid.dta thermal solids
ESolid.dta electrical materials
FMSolid.dta ferromagnetic material
PMSolid.dta permanent magnets

28.2. MATERIAL PROPERTY FILE UTILITIES 349

28.2.1 Changing Properties with SCFProp

You can create a custom property file using the SCFProp program distributed
with the SCFusion model class. This program is labeled “property database
editor” in your Window’s program group. With SCFProp running, File|Open
the property file you want to start from, modify the data using the self-evident
program dialogs, then File|Save As under a new name. Saving under a new
name is important to avoid future conflicts with an upgrade distribution file of
the same name. With SCFProp it is easy to change properties of an existing
material or create an entirely new one. Note: All property values must be
entered in SI units.

To use your custom property file in Sage simply change the corresponding file
name in the dialog that opens under the Options|Model Class menu command.
The values you set are stored in the program initialization file (e.g. SCFusion.ini),
so they will be in effect for the current session as well as future sessions.

Sage reads data from property files whenever you change the value of a gas
or solid variable selected from a list. This data becomes part of your model
while Sage is executing and is stored in its input data file when your model is
inactive. The next time you open the model, Sage automatically compares the
data of any such variables with data by the same name, if any, in the current
property files. You are ordinarily not aware of this unless there is a discrepancy,
in which case Sage will put up a dialog giving you the option to update your
model’s data according to the property files or ignore the discrepancy.

Cubic Splines

Many properties are temperature dependent and represented by a discrete set
of samples. When non-sampled values are needed, they are interpolated using
standard cubic spline techniques, essentially fitting a piecewise-defined cubic
polynomial to data (see chapter 3 of reference [50]). Standard cubic splines
are defined so that first and second derivatives are continuous throughout the
interpolation domain. This can lead to wiggles and over-shoots at corners,
where the slope of the data changes abruptly. To avoid this problem Sage uses
so-called constrained cubic splines that sacrifice second-derivative continuity in
order to minimize overshoot at corners [36].

Thermal Solid Properties

The source for thermal solid data was mainly reference [68] and to a lesser degree
reference [34].

In critical applications you should check over the conductivity and specific
heat data pairs that appear in the display windows or output listing. In many
cases, solid conductivity is not very predictable below 100K. Data from different
sources for the same nominal material can differ by orders of magnitude pre-
sumably due to small variations in alloy composition. Solid specific heats, like
conductivities, vary dramatically with temperature. However, there is much less

350 CHAPTER 28. MATERIAL PROPERTIES

scatter in the data as reported from several sources. Apparently, specific heat
is not quite as sensitive to variations in material composition as is conductivity.

Electrical Properties

The sources for electrical resistivity data were ASM handbook [4] and Cryogenic
Engineering textbook [28].

Ferromagnetic Properties

Soft Ferromagnetic Properties are generally available in the magnetic material
literature or supplier data sheets, although usually not directly. It is rare to
find these properties tabulated over a range of temperatures, in which case it is
reasonably to assume that they all drop linearly to zero at the Curie temper-
ature. Actually the relative permeability drops to the value one at the Curie
temperature but that is essentially zero for practical purposes. Values are often
reported in CGS rather than SI units, in which case the following conversion
table may be useful.

1 T = 104 Gauss
1 A/m = 0.01257 Oersted

Often instead of saturation magnetization Js a vendor will provide the value
of the magnetic flux B at some large value of applied field H . The hope is
that magnetization J is close to the saturation value Js at the max B value
reported. Note that the magnetic flux B is larger than the magnetization by
the term µ0H , which amounts to an extra 0.0126 T for every 10,000 A/m. For
large applied fields this extra µ0H should be subtracted from the max B value
when setting the value Js.

Maximum relative permeability µr may be called many things and the value
reported may not be the appropriate value for Sage. In Sage, the combination
of µr and Js determine the anhysteretic magnetization function Ma shown in
figure 25.12. In the product literature if a B-H curve is also available it is a
good idea to use any reported value of µr as an initial value and adjust it so
the B-H curve produced by Sage matches the data over the entire range of H .
You can do this by using a simple Sage model consisting of a soft ferromagnetic
bar bounded by magnetic potential references to generate a set of B vs H data
points over a range of steady (DC) H fields values. Sample model SoftFerroB-
Hmap.stl shows how to generate such a map which is used to produce a plot like
the one below:

28.2. MATERIAL PROPERTY FILE UTILITIES 351

0.0

0.5

1.0

1.5

2.0

2.5

0.0E+00 2.0E+03 4.0E+03 6.0E+03 8.0E+03 1.0E+04 1.2E+04

B
 (

T
)

H (A/m)

DC Magnetic flux as function of magnetic field strength
SiliconSteel(3%)_2T_7A/m

Permanent Magnet Properties

Permanent Magnet Properties can be found in supplier data sheets. The J(H)
demagnetization curve shape parameter Kjh is unique to Sage and is entered
according to a visual comparison of the actual demagnetization curve and the
approximate curves shown in figure 25.14 of section 25.7.2.

Coercive Forces In the above properties there are two coercive forces HcJ

and HcB both positive numbers, defined as follows. Start from a high positive
magnetic field H where the polarization is near saturation. Then gradually
reduce H to zero and below. HcB is the absolute value of H at the point when
the magnetic flux density B falls to zero. HcJ is the absolute value of H at the
point when the magnetic polarization J falls to zero. HcB is always the smaller
of the two because at H = −HcB the polarization is still positive at the value
J = µ0HcB (from definition (25.93) above).

For a soft ferromagnetic material HcJ and HcB are essentially the same. The
difference between HcJ and HcB can be estimated by from the Taylor expansion
approximation HcB/(HcJ −HcB) ≈ dM/dH where dM/dH = µr − 1 is usually
a very large number for a soft ferromagnetic material. So (HcJ −HcB) is very
small compared to HcB.

Gas Properties

The sources for default ideal-gas data were thermophysical properties and P -v-
T tabulations in references [68], [10], [69] and [44]. The value for R is simply
the universal gas constant R = 8.314E3 J/(kmol K) divided by the molecular
weight of the gas. The source for tabular-gas data was nist refprop software.

352 CHAPTER 28. MATERIAL PROPERTIES

Entering Tables of State For TBspline3Gases the data-entry process is
complicated by the need to enter five state tables — compressibility Z, internal-
energy ε and transport properties cp, µ and k. Further complicating things is
the tricky nature of cp, µ and k in the two-phase region as explained in section
15.1.2. TBSpline3Gas gases are identified by the name BSpline3 Gas in the Add
menu item of the SCFProp.exe application. The data values are visible in the
scroll box titled Properties of Selected Item at the right of the form, when you
highlight a tabular equation-of-state gas type.

Entering state tables using the SCFProp application is not recommended. A
better way is to use RefpropToSage.exe application as discussed below. However,
for sake of completeness here is the procedure using SCFProp:

Click on the Edit Properties button below the scroll box, then on the ap-
propriate button of the sub-dialog box. You should now see a file-open dialog
enabling you to load a file containing the appropriate data table. You do not
enter values one by one as you do for single-valued data or cubic-spline interpo-
lation pairs. You load an entire file of values all at once. This is to allow you to
create the property table(s) using a spreadsheet program like Excel or by some
other automatic means that might be easier and more reliable than entering
each value by hand. For symmetry sake, there is also a provision for saving the
a gas’s property data to a separate file, although you will probably not need to
do this very often.

Property Table Data Format SCFProp expects to load a tab-delimited
file of values. Excel normally produces such a format when saving as a text file
(*.txt). The file must contain a rectangular table of data fields as follows:

first row a label such as “T \ v” identifying the nature of the first column
and row of the table, followed by a number of specific volume v values in
increasing order (important) with units (m3/kg)

subsequent rows a temperature value T with units (K) followed by a number
of property values under each v of the first row. The temperature values
must be increasing in subsequent rows. The property values are up to you.

There is no limit to the number of v columns or T rows in the table. The easiest
way to understand this is probably from the following, rather short, example —
roughly what you might see on your Excel screen:

T \ v 0.005 0.006 0.007 0.008 0.009 0.01
3 5.8909 1.6582 9.11E-02 3.09E-02 3.47E-02 3.86E-02
3.5 5.2087 1.5932 0.26822 5.18E-02 5.82E-02 6.47E-02
4 4.7152 1.5693 0.42009 7.86E-02 8.84E-02 9.82E-02
4.5 4.3514 1.5679 0.54942 0.18123 0.12542 0.13935
5 4.0773 1.5788 0.66019 0.31901 0.20832 0.18872
5.5 3.8661 1.5964 0.75589 0.43549 0.32443 0.29551
6 3.7001 1.6174 0.8393 0.5353 0.42366 0.38945
6.5 3.5671 1.6397 0.91255 0.62182 0.50954 0.4708

You must adhere to this format closely, otherwise SCFprop may squawk at you.

28.2. MATERIAL PROPERTY FILE UTILITIES 353

Interpolation Details One way you can see if the resolution of your table is
adequate is by creating a file of interpolated values by clicking the interpolation
details button below the scroll box in the SCFProp form. When you click this
button, a dialog opens allowing you to specify a range of v and T and number
of points. The result is a tab-delimited file of values, similar to your original
compressibility table. You can inspect this file with Excel.

Note that the interpolation values produced are the values interpolated be-
tween your data points, which may or may not include the original data points.
So, for example, by interpolating a bunch of points in a small region of v − T
space you can see exactly how the bicubic spline routines are interpolating be-
tween your Z values in a small region of your original table.

In addition to interpolated Z and ε values, you also get interpolated values
entropy s. Because of arbitrary constants of integration s values may be offset
somewhat from values you might be comparing them against. Constant offsets
do not matter.

28.2.2 Entering TBspline3Gas data with RefpropToSage

Windows application RefpropToSage.exe allows you to read native fluid (*.fld) or
mixture (*.mix) files distributed with the nist refprop software[41] and convert
the data to TBSpline3Gas properties. What makes this possible is a dynamic
link library refprop.dll, distributed with the refprop software. The application
RefpropToSage.exe is part of the Low-T Cooler distribution but you will have
to obtain the refprop.dll from NIST (http://www.nist.gov/srd/nist23.cfm) and
save a copy in the same directory as RefpropToSage.exe or in the Windows DLL
search path (Windows or Windows system directory).

Using RefpropToSage is a four step process. Figure 28.1 shows the graphical
interface of the RefpropToSage conversion utility.

1. Open a refprop fluid or mixture file (File menu item).

2. Review and adjust the plots at the top of the form showing temperature
and specific volume data values. These are the (vj , Tk) interpolation data
points at which Sage gas properties will match refprop values. You
can make adjustments by changing the configuration constants in the edit
boxes. Constants TminBuffer, TmaxBuffer, VminBuffer, VmaxBuffer ad-
just the spacing between the first and last vj and Tk data values and
the minumum and maximum refprop values. Constants TptsBelowTcrit,
TptsAboveTcrit, TptsFarAboveTcrit control the number of points in three
regions relative to the critical temperature, as explained below. Con-
stants VptsBelowLiquid, VptsInMixed, VptsAboveVapor control the number
of points in the liquid single phase region at the lowest temperature, the
two-phase region just below the critical temperature and the vapor single-
phase region at the lowest temperature, as explained below.

3. Click the Convert To Sage Gas button and inspect the plots in the inter-
active plotting dialog that pops up (Figure 28.2) to make sure there are

354 CHAPTER 28. MATERIAL PROPERTIES

Figure 28.1: Interface for the RefpropToSage conversion utility.

Figure 28.2: Dialog for interactively plotting gas properties after conversion to
Sage format (TBSpline3Gas).

28.2. MATERIAL PROPERTY FILE UTILITIES 355

no anomalies. The Convert To Sage Gas disappears after the conversion
process to declutter the form.

4. When you are satisfied with the result click the SaveBSpline3Gas.Data
button in the bottom right corner to save the converted data to a Sage-
format dta file. You may then use the SCFProp.exe program to append
the resulting file to the gas-property data base file you use with the Low-
T Cooler application (the one selected in the Options|Model Class dialog,
Properties tab.

Plot Interaction For the dialog shown in Figure 28.2 mouse clicking on plot
lines or T , v data points displays the numerical value of the isotherm or in-
dividual T , v value. Resize the plot by holding the left mouse button down
and dragging between the upper left and lower right corners of a rectangle of
interest. Undo by dragging in the opposite direction. Reposition the plot by
holding the right mouse button down and dragging.

The edit boxes v-interval subdivisions and T-interval subdivisions to the right
of the property values plot allow you to inspect interpolated values between
tabulated data points. With zero subdivisions the plots just connect the tab-
ulated data points. With subdivisions greater than zero the plots also show
values interpolated between the data points. It is a good idea to set subdivision
values to at least 1 so you can spot any spurious wiggles or other anomalies and
possibly correct them by modifying the configuration constants (e.g. increasing
the number of T or v data points).

Configuration constants (set in edit boxes) are automatically saved when-
ever you save the BSpline3Gas data to a file. The constants are saved as a
companion to the original refprop fluid or mixture file in the form of a tab-
delimited text file with the suffix Config appended to refprop file name and
file extension .tab. For example, HeliumConfig.tab.

The ConfigValues menu item allows you to load configuration constants from
any previously saved configuration file. You can also independently save a con-
figuration constant file or restore default values.

Gas Mixtures are defined in refprop mixture files (.mix file extension). The
refprop software contains a number of pre-defined mixtures and also allows
you to define your own custom mixtures and save them to .mix files (Store
button of the Specify Mixture Composition dialog). A refprop mixture file only
contains information about the molar fractions of the mixture components and
file names where their properties are stored. The RefpropToSage utility must
be able to locate the individual fluids specified in a mixture file. It will look
for them first in the same directory as the mixture file and then in one or more
search paths specified in the Options menu item.

Mixture component fractions apply to the bulk fluid in a homogeneous state
(e.g. all vapor or all liquid). But there is some confusion in the two-phase state
where at a given temperature the fluid fractions in liquid and vapor phases

356 CHAPTER 28. MATERIAL PROPERTIES

a a a a a a a a a a a a a a a a a aa
a
a
a
a
a
a
a
a
a
a
a
a

a
a

a
a

a

a
a

a
a

a

a
a

a
a

a

a
a

a
a

a

+

+

+

+

+

+

+

+

+

+

�
�

�
�

�
�

��

@
@

@
@

@
@

@@

Tmin

Tc

Tmax

Tk

6

vmin vmax

vj -

bubble-point curve

@
@@R

dew-point curve

�
��	

a = (vj, Tk)

+ =

{
vl(Tk − ∆T/2)
vv(Tk − ∆T/2)

Figure 28.3: BSpline3Gas interpolation points.

generally differ from the bulk fractions. This two-stage variability limits Sage
models using gas mixtures to processes where there is no significant separation
of the vapor and liquid downstream of the point where they are generated. Sage
can model vapor condensation or liquid boiling in a flow process as long as both
phases flow together. Sage cannot model processes like fractional distillation
where separating the vapor from the liquid is a fundamental part of the process.
In fractional distillation the vapor of a two-phase equilibrium state is physically
separated to a different location and condensed at a lower temperature. That
physical separation resets the baseline component fractions.

Implementation Details The implementation of the RefpropToSage pro-
gram is straight forward but not completely trivial. Special considerations are
required for some properties in the two-phase region and sometimes at low-
volume (high density) points out of refprop’s range.

Interpolation Points To avoid problems it is necessary to choose the (vj, Tk)
interpolation points with care near the boundaries of the two-phase region.
These boundaries are defined by the values of saturated vapor and liquid volumes
vd(T) and vb(T) at the dew and bubble points available in refprop. The way
this is done is illustrated somewhat abstractly in figure 28.3. vj and Tk values
are drawn in non-linear scale so the saturation curves vd(T) and vb(T) appear

28.2. MATERIAL PROPERTY FILE UTILITIES 357

as straight lines. The temperature points Tk are chosen as follows:

• First a number of points (TptsBelowTcrit) spaced by ∆T from Tmin +
∆T/2 to just below the critical temperature Tc − ∆T/2. Tmin is near the
minimum value supported by refprop for the particular fluid.

• Followed by a number N points (TptsAboveTcrit) spaced by ∆T from
Tc + ∆T/2 to Tc + (N − 1

2)∆T .

• Followed by a number of points (TptsFarAboveTcrit) spaced in equal ratios
from Tc + (N + 1

2
)∆T up to Tmax (the maximum value supported by

refprop)

The specific volume points vj are then chosen with reference to the saturated
liquid and vapor densities vb and vd tabulated at points offset by ∆T/2 from
the above Tk values, at the points T = Tmin, . . . , Tc − ∆T :

• First a number of equal spaced points (VptsBelowLiquid) between a mini-
mum value vmin and the lowest liquid volume vb(Tmin).

• Followed by the vb(T) values, T = Tmin + ∆T, . . . , Tc − ∆T

• Followed by a number of points (VptsIntermediate) spaced in equal ratios
between just after the last point on the bubble line vb(Tc −∆T/4) to just
below the critical volume vc and the same number of points from just
above vc to just before the first point on the dew line vd(Tc − ∆T/4)

• Followed by the vd(T) values, T = Tc − ∆T, . . . , Tmin + ∆T

• Followed by a number of points (VptsAboveVapor) spaced in equal ratios
from vd(Tmin) up to vmax, where vmax is the greater of twice vd(Tmin)
and RTmax/Pmin, for Pmin a reasonable minimum pressure such as 1
atmosphere

Chosen in this way it is a simple matter to know which k correspond to tem-
peratures below Tc and which j, k indices correspond to points in the two-phase
region.

Saturation Pressure In theory and in refprop the slope of saturation pres-
sure (dP

dv)T in the two-phase region is much smaller than the slope in the liquid
or vapor single-phase regions. For a pure fluid at a given temperature T the
pressure remains constant as specific volume goes from the saturated liquid
value vb(T) (liquid bubble point) to the saturated vapor value vd(T) (vapor
dew point), as illustrated in figure 28.4. From the point of view of Sage con-
vergence this is bad because the sudden condensation or evaporation of fluid
that results from a small change in pressure in the saturation region might play
havoc with the numerical solution.

To remedy this problem the RefpropToSage program takes some liberties
with pressure in the saturation region — it adds a monotone decreasing smooth-
ing function to the refprop pressure. This is illustrated in figure 28.5 which

358 CHAPTER 28. MATERIAL PROPERTIES

E
E
E
E
E
E
E
E
E

P

v

bubble-point boundary

�
�

��

dew-point boundary

��	

Figure 28.4: Typical pressure isotherm below Tc for a pure fluid.

P

X0 1

Figure 28.5: Smoothed pressure isotherm between X = 0 (last liquid volume vl

before the bubble point) and X = 1(first vapor volume vv above the dew point).
X is just the specific volume relative to the interval over which the smoothing
occurs.

28.2. MATERIAL PROPERTY FILE UTILITIES 359

shows a smoothed pressure isotherm Ps(X) between a dimensionless specific-
volume X = 0 at liquid volume vl just below the bubble point and X = 1 at
vapor volume vv just above the dew point. The smoothing function is the sum
of a linearly decreasing pressure in the two-phase region plus a small positive
step at X = 0 that rapidly decreases exponentially within the two-phase re-
gion. The purpose of this step is to smooth the P slope discontinuity at the
bubble line just enough to ensure that P (v) always strictly decreases just after
the bubble line when interpolating P (V) for an isotherm tabulated between the
Tk data points, which otherwise might not be the case. The linear part of the
pressure-smoothing function for X > 0 is

Pl(X) = (P (1)− Pd) (2X − 1) (28.1)

where Pd is the dew-point pressure at X = Xd (dimensionless value near 1
of dew-point volume vd). This imposes a pressure correction that progressively
decreases above the midpoint volumeX = 1/2 and progressively increases below
X = 1/2, with the average value zero. So the Pdv work across the two-phase
region is not affected. The pressure difference P (1) − Pd at dew point depends
on the spacing of the volume data points which varies depending on the settings
of RefpropToSage.

The exponentially decreasing step part is

Pe(X) = dPe−X/Xc (28.2)

where dP is the pressure step at X = 0, on the order the pressure difference
between the Tk isotherm (current) and Tk+1 isotherm (next), and Xc is the
dimensionless spacing of the vj values at the bubble line, a small number that
determines how fast the step decays.

The final smoothed pressure is

Ps(X) = P (X) + Pl(X) + Pe(X) (28.3)

where P (X) is the refprop pressure. This pressure smoothing is embedded in
the compressibility data table Z(vj , Tk) because pressure itself is not directly
tabulated.

Internal Energy refprop calculates fluid internal energy ε in both single-
phase and two-phase regions and RefpropToSage uses the refprop values di-
rectly. Prior to version 14, Sage shifted the refprop values so they were always
positive, but this is no longer required. According to refprop documentation,
“The absolute values of enthalpy, entropy, and energy at a single state point
are meaningless. It is only the difference between two different state points that
matter”.

Transport Properties in the Two-Phase Region RefpropToSage encodes
values for transport properties k, µ and cp (conductivity, viscosity and specific
heat at constant pressure) in the two-phase region according to the scheme

360 CHAPTER 28. MATERIAL PROPERTIES

outlined in section 28.2.1. In the single-phase region RefpropToSage records the
refproptransport-property values directly.

in the interactive plotting dialog (Figure 28.2) you can plot the vapor and
liquid transport properties separately. Vapor properties are defined for temper-
atures above the critical temperature or sub-critical temperatures with volumes
above the bubble line. Liquid properties are defined only for temperatures below
the critical temperature and volumes below the dew line. Because of the way
the properties are stored you may see anomalies in the values of vapor properties
near the bubble line or liquid properties near the dew line. You should be able
to remove these anomalies by increasing the VptsInMixed configuration constant
which has the effect of refining the v-grid near the critical specific volume.

Out-of-Range Single-Phase Properties In the single-phase region ref-

prop defines all required properties in theory but can sometimes fail to return
valid results at extremely high temperatures and low volumes (corresponding to
extremely high pressure). When refprop fails RefpropToSage linearly extrap-
olates the failed property from previously calculated values at higher volumes.
The assumption is that refprop is more likely to fail at low rather than high
specific volumes so RefpropToSage tabulates properties in order of decreasing
specific volume with the likelihood that values that may be needed for extrapo-
lation will be available. RefpropToSage warns you when property extrapolation
occurs. The hope is that the extrapolated values will fall at temperatures or
pressures outside the range of interest.

If property extrapolation fails (no values available to extrapolate from) then
the BSpline3Gas conversion will fail. Reducing the maximum tabulated tem-
perature (increasing TmaxBuffer) or increasing the minimum tabulated specific
volume (increasing VminBuffer) may solve the problem.

Mixture Difficulties Not all gas mixtures are equal when it comes to ref-

prop. Property calculations in the two-phase region can fail to converge, espe-
cially if the component fluids have wildly different critical points. There may be
temperatures in the two-phase region for which one or more of the component
fluids is always in a supercritical single-phase state. For example, a mixture of
nitrogen and water (humid air), where water can condense from vapor to mostly
liquid at an elevated temperature where nitrogen remains always in the vapor
phase, well above its critical temperature. On the other hand a fluid mixture
can behave almost like a pure fluid. For example, an 80-20 nitrogen-oxygen
mixture (dry air) where the two components condense more-or-less together.

Keep this in mind when running the RefpropToSage utility for gas mixtures.
Success is not always guaranteed. You may have to play around with the con-
figuration constants to avoid errors in the two-phase region or abandon your
efforts entirely, hoping that a future release of the refprop dll will solve the
problem.

Chapter 29

SCFusion Deprecated
Classes

Certain model classes have outlived their usefulness over the 30 year history of
Sage. Often because of the evolution toward ever faster computers with more
memory. Newer components replaced the functionality of earlier components
and added new functionality. These model classes are still retained for backward
file compatibility but gathered here to avoid cluttering the rest of the user’s
guide.

29.1 Deprecated Gas Classes

29.1.1 Tabular Gases

Previous tabular gas class TBSplineGas and TBSpline2Gas have been superseded
by TBSpline3Gas. The original TBSplineGas derived its table of internal energy
values from its input table of compressibility values and used zero-pressure lim-
its for transport properties viscosity and thermal conductivity. TBSpline2Gas
read the internal energy table as an input but continued to use zero-pressure
limits for transport properties. With TBSpline3Gas viscosity and thermal con-
ductivity are tabulated over a range of both pressures and temperature and
the RefpropToSage utility was introduced for generating input property tables
directly from Refprop DLL software.

29.2 Redlich-Kwong Gases

Gases based on the Redlich-Kwong equation of state predate any of the tabular
gas classes. They were introduced as the first effort to add real gas behavior
to Sage models in the days when ideal gases were the only option. Subsequent
development of tabular gas classes (tabulated state properties) offered more

361

362 CHAPTER 29. SCFUSION DEPRECATED CLASSES

accurate gas properties with negligible impact on computational performance,
essentially eliminating the need for Redlich-Kwong gases.

29.3 Deprecated Moving Parts

Phasor moving parts were introduced first in the early days of Sage as a natural
evolution of the familiar complex-solution analysis of mechanical systems gov-
erned by linear equations. Time-ring moving parts (periodic time grid) followed
later, with the ability to resolve higher harmonic components in the solution,
as well as the sinusoidal component (equivalent to the phasor value). So models
evolved that used both phasor and time-ring moving parts. This could lead to
problems. For example, if you decided to replace a phasor piston built into a
composite piston-cylinder component with a time-ring piston it was necessary
to replace the entire composite component, often including a regenerator, clear-
ance seal and appendix gap inside. Better to deprecate phasor moving parts
and avoid the problem entirely, while also simplifying the Sage interface.

In the edit form, phasor force connectors are arrows labeled Fphsr. Pressure
connectors are arrows labeled Pphsr. You are only allowed to connect a force to
a force and a pressure to a pressure, and only when both have the same solution
structure. That is, you cannot connected phasors to time rings.

29.3.1 Moving-Part Attachments

The following point and area-face attachments are deprecated in the model-
component palette for phasor moving parts:

Icon Purpose

phasor negative-facing force attachment

phasor positive-facing force attachment

phasor negative-facing area attachment

phasor positive-facing area attachment

The following volume-displacement attachments are deprecated in the model-
component palette for variable-volume gas components:

29.3. DEPRECATED MOVING PARTS 363

Icon Purpose

phasor negative-facing volume displacement

phasor positive-facing volume displacement

29.3.2 Moving-Part Variables

Phasor moving parts have a number of output variable found in all descendants:

F : (phasor, N) Net boundary force acting on the component resulting from
all connections. A negatively directed boundary force cancels a positively
directed force.

Wnet : (real, W) Time-averaged power delivered by all boundary forces. The
mean value of net force times velocity.

29.3.3 Generic Spring

TPhsrSpr

Phasor springs solve displacement x from net applied boundary force F and
stiffness input K using the equation

F = Kx (29.1)

where variables F and x are complex numbers and solution for x is straight-
forward in terms of complex algebra.

29.3.4 Generic Damper

TPhsrDmp

Phasor dampers solve displacement x from net applied boundary force F and
damping coefficient D using the equation

F = Dẋ (29.2)

where ẋ is velocity. In complex-amplitude notation ẋ may be written iωx, from
which it is easy to solve for x explicitly.

29.3.5 Reciprocating Mass

TPhsrRcp

Phasor reciprocating masses solve displacement x from the net resultant force
F and mass M using Newton’s equation of motion

F = Mẍ (29.3)

where ẍ is acceleration. In complex-amplitude notationẍ may be written −ω2x
so it is easy to solve for x explicitly.

Phasor reciprocators introduce new variables:

364 CHAPTER 29. SCFUSION DEPRECATED CLASSES

Mass : (real, kg) Reciprocating mass.

FF : (phasor, N) Forcing function. An applied body force specified within the
model component itself rather than arising as a boundary force.

X : (phasor, m) Displacement from mean position.

29.3.6 Constrained Piston

TPhsrPis

Phaseor constrained pistons solve required forcing function Ff from net applied
boundary force Fb, displacement x and mass M , using Newton’s equation of
motion

Ff = Mẍ− Fb (29.4)

where ẍ is acceleration.
The phasor constrained piston introduces new variables:

Xamp : (real, m) Displacement amplitude.

Xphase : (real, radians) Displacement phase angle.

FF : (phasor, N) Required forcing function to achieve Xamp and Xphase in light
of applied boundary forces.

Displacement is given by two real variables rather than a single phasor so that
amplitude or phase may be more conveniently optimized if need be. Physical
displacement is

x = Xamp cos(ωt + Xphase) (29.5)

29.3.7 Relative Moving Parts

All phasor relative moving parts have the variables:

Fneg : (phasor, N) Force acting on the component negative boundary.

Fpos : (phasor, N) Force acting on the component positive boundary. By de-
fault, Fpos is equal and opposite Fneg, or 180 degrees out of phase. (see
equation (16.5))

Wnet : (real, W) Time-averaged power delivered by the boundary forces. For
a relative spring, this is zero. For a relative damper this is the power
absorbed by the damper.

29.3.8 Relative Springs

TPhsrRelSpr

Sage solves the negative coordinate xneg as above and the positive coordinate
xpos from the applied boundary force Fpos and stiffness K using the equation

Fpos = K(xpos − xneg) (29.6)

29.3. DEPRECATED MOVING PARTS 365

29.3.9 Relative Dampers

TPhsrRelDmp

Sage solves the positive coordinate xpos from the applied boundary force Fpos

and damping coefficient D using the equation

Fpos = D(ẋpos − ẋneg) (29.7)

29.3.10 Simple Crank Piston

TGtCrankPis

This component has been superseded by the combination of a flywheel, simple
crank linkage and reciprocating mass which together provide greater function-
ality.

A simple crank piston is a descendant of the time-ring constrained piston
where Fourier-series displacement is now calculated as a dependent variable
in terms of geometrical input variables pertaining to a simple crankshaft and
connecting-rod kinematic mechanism.

Mathematically, displacement is given by

x = r
(

cos θ+
√

cos2 θ+ L2/r2 − 1
)

− L (29.8)

where r is crank-throw radius, L is connecting-rod length and θ is crank angle,
defined in terms of angular frequency ω and a fixed phase angle ρ as

θ = ωt + ρ (29.9)

In Sage, the above variables become:

Rcrank : (real, m) Crank-throw radius r.

Lratio : (real, dimensionless) Connecting-rod length divided by crank-throw
radius L/r.

Phase : (real, radians) Crank-angle phase shift ρ.

Any or all of these may be optimized if need be.

29.3.11 Flexure Springs

These model components descend from the phasor spring components docu-
mented above. Except linear spring stiffness is now calculated as a dependent
variable in terms of physical dimensions for spiral-arm flexure springs. And the
mass of the spring is reflected in its attachment force. Displacement x is now
solved from net applied boundary force F , stiffness K and effective mass me

using the equation
F = Kx+meẍ (29.10)

There are two phasor versions. The first version represents a stack of flexure
elements located at one point. The second represents a stack of flexure elements
separated into two parts by some axial distance, acting as a couple.

366 CHAPTER 29. SCFUSION DEPRECATED CLASSES

Flexure spring components date from the early days of Sage before the advent
of CAD design software with built in FEA stress analysis and modal analysis
that are much more accurate and general than Sage components. So Sage
flexure springs have turned out to be an evolutionary dead end. But still,
the mathematical formulation below for spring stiffness, peak stress, effective
mass and resonant frequency provide some simple relationships that have proven
useful for guiding CAD design and explaining inherent trade-offs between such
things as resonant frequency, stress and mass that tend to get lost in the details
of CAD modeling.

The theory behind Sage spiral arm flexures is an extrapolated case of helical
coil spring theory. It applies, more or less, to flexures having spiral arms of
uniform width and thickness. Since the analysis is only approximate, a number
of calibration constants are included in the model. The idea is that you can reset
their default values, if you want, based on a separate finite-element analysis of
your particular geometry.

Flexure Stack

TPhsrFlx

This component is intended as a plug-compatible replacement for a generic
phasor spring in a resonant-system model. You would use this component during
an advanced stage of design where you wanted to actually design and optimize a
spiral-arm flexure spring, rather than just work with its generic spring stiffness
within a larger system. The flexure-stack component introduces new variables:

Ca, Cr, Cs, Cw, Cm : (real, dimensionless) Empirical calibration constants ac-
cording to following theory.

E : (real, N/m2) Elastic modulus E of spring material.

Rho : (real, N/m2) Density ρ of spring material.

T : (real,m) Thickness t of a single flexure.

W : (real, m) Spiral arm width w.

D : (real, m) Active diameter D. Defined by circle where arms attach to outer
rim.

M : (real, dimensionless) Number k of arms per flexure.

N : (real, dimensionless) Number n of flexures in stack.

Kr : (real, N/m) Radial stiffness Kr . Spring stiffness for deflection transverse
to spring axis.

Sm : (real, N/m2) Peak torsional stress τm.

wn : (real, 1/s) Resonant angular frequency ωn. The operating frequency at or
above which the analysis breaks down due to internal resonance.

29.3. DEPRECATED MOVING PARTS 367

Me : (real, kg) Effective mass Me. That mass which moving with the same
displacement amplitude as the flexure central attachment point produces
the same reaction force.

Tn : (real, radians) Spiral arm total turning angle θT . The angle through which
a radius vector rotates as it traverses a spiral arm from its inner to outer
attachment points.

Flexure-Stack Couple

TPhsrFlxCpl

This component is a minor variation of the above flexure component (a descen-
dant actually) that presumes the stack of flexures is divided into two groups
spaced by some distance along the central axis, so as to produce a restoring mo-
ment to a tilting moment load. It, too, is a plug-compatible replacement for the
generic phasor spring component. The angular stiffness within this component
is intended for use in optimization constraints rather than some sort of trans-
verse force connection to other model components. New variables introduced
by the flexure-stack couple are:

Sc : (real, m) Couple separation distance S.

Ka : (real, N m / radian) Angular stiffness Ka.

You could optimize one of these subject to a constraint on the other.

Angular stiffness, defined as the restoring moment produced per unit tilt
angle in radians, may be expressed in the form

Ka =
1

4
KrS

2 (29.11)

where Kr is the total radial stiffness of both groups of flexures combined and S
is the distance separating the groups. A simple force diagram will convince you
this is so.

Theory

The principle assumption is that spiral flexure arms behave at each point like
the coils in a helical spring with the same radius of curvature. This is reasonable
provided that (1) the arms actually turn through some minimum angle as they
spiral out from the center (so as to produce load moments similar to those in
helical springs), (2) they are longer than some minimum length (so that we may
ignore the stresses due to slope and roll constraints at the end attachments) and
(3) the radius of curvature does not change too abruptly.

Spiral Geometry A spiral flexure may be geometrically characterized by four
independent variables:

368 CHAPTER 29. SCFUSION DEPRECATED CLASSES

D active diameter
t thickness
w arm width
k number of arms

If we take r(θ) to be the radius (distance from center to spiral-arm neutral
axis) as a function of turning angle, then the spiral arm shape is defined by the
geometrical requirement that ∆r/∆θ = k(1 + ε)w/2π. In English: r increases
by k arm widths for each turn. Factor (1 + ε) accounts for the gap between
arms and the fact that the radial distance between edge-bounding involutes
progressively deviates from perpendicular arm width as r decreases. If dr/dθ is
as above then arm shape r(θ) must be

r(θ) = r0 +
k(1 + ε)w

2π
θ (29.12)

where r0 is the inner radius. The total turn angle for each spiral arm is that
angle θT for which r(θT) = D/2. If we ignore r0 then total turn angle is
approximately

θT ≈ πD

k(1 + ε)w
(29.13)

In the following analysis, we will require that θT should always be at least π/2
or so. And we shall assume that ε is a design constant of minor consequence to
be subsumed by calibration constants.

Axial Spring Stiffness From Wahl’s classic tome of spring design (reference
[70], equation 10-9, p. 129), we find the formula for axial deflection x per unit
coil turning angle in a rectangular-bar helical spring under applied load Fx

dx

dθ
≈ 8.3

Fx

wt3E
r3 (29.14)

This is for Poisson’s ratio = 0.3, t � w and w � D. Applying this locally to
each point of our spiral arm gives total axial deflection

x =

∫ θT

0

dx

dθ
dθ =

2π

k(1 + ε)w

∫ D/2

0

dx

dθ
dr =

2π

k(1 + ε)w

8.3Fx

wt3E

∫ D/2

0

r3dr

(29.15)
Taking ε = 0.5, for example, and carrying out the integration gives per-arm
total axial deflection

x ≈ 0.54
D4

kw2t3E
Fx (29.16)

and axial spring stiffness for the total flexure

Ka =
kFx

x
≈ 1.8

k2w2t3E

D4
(29.17)

29.3. DEPRECATED MOVING PARTS 369

Radial Spring Stiffness The calculation of radial stiffness proceeds along
similar lines. Again from Wahl (equation 24-7 p. 280) we get the formula for
radial deflection y per unit coil turning angle in a rectangular-bar coil spring
under shear load Fy

dy

dθ
≈ 6.0

Fy

tw3E
r3 (29.18)

Integrating this over the total turning angle and taking ε = 0.5, exactly as
before, gives per-arm total radial deflection

y ≈ 0.39
D4

kw4tE
Fy (29.19)

and radial spring stiffness for the total flexure

Kr =
kFy

y
≈ 2.6

k2w4tE

D4
(29.20)

This averages out some large fluctuations that occur each quarter turn, so it
is important that we not apply it to turning angles below about π/2. It also
ignores buckling instability.

Peak Stress Assuming the peak arm stress is pure torsion due to axial dis-
placement, then according to Wahl (equation 10-7, p 128) it occurs at the outer
end of the arms and is given by

τm ≈ 1.5
FxD

wt2
(29.21)

This is for t � w, w � D and ignores any stress concentrations at the arm
endpoint connections. Solving previous deflection equation (29.16) for Fx in
terms of deflection x and substituting for Fx gives the equation for peak stress
in terms of axial deflection

τm ≈ 2.8
kwtE

D3
x (29.22)

Effective Mass Based on kinetic and potential energy arguments the spiral-
arm effective reciprocating mass as a fraction of actual mass is the area-weighted
displacement-squared divided by the center displacement squared, or

Me/M =

∫ 1

0
x2(r)2πr dr

πx2
0

(29.23)

The above equation presumes a spiral arm of unit outer radius and center de-
flection x0. From the previous axial-deflection formula (29.16) we may take,
x(r) = x0(1 − r4) — highly nonlinear with most of the drop-off near the outer
radius. Substituting into the previous equation and integrating gives the result

Me/M = 0.53 (29.24)

370 CHAPTER 29. SCFUSION DEPRECATED CLASSES

Actual mass M is just density ρ multiplied by the part of flexure disk area
occupied by spiral arms, or M = ρ(1/(1 + ε))tπD2/4. Taking ε = 0.5, effective
mass works out to

Me = 0.28ρtD2 (29.25)

Resonant Frequency Once we know axial spring stiffness and effective re-
ciprocating mass, we may approximate resonant frequency as

ωn ∝
√

Ka/Me ≈ 2.5
kwt

D3

√

E/ρ (29.26)

which is just the resonant frequency of the flexure with no attached mass. This
is not quite correct, because the bending shape of the spiral arms loaded by
uniformly distributed inertial forces (imposed by its mass distribution) is apt to
differ from the shape under static deflection produced by a central loading and
clamped outer rim. However, with the way these things usually go, the above
formula is probably off by no more than a constant of proportionality which can
be calibrated out with finite-element analysis.

Calibrated Formulae Introducing into our equations the effect of n, the
number of flexures stacked together, the above formulae become:

axial stiffness

Ka = Can
k2w2t3E

D4
(29.27)

radial stiffness

Kr = Crn
k2w4tE

D4
(29.28)

peak stress

τm = Cτ
kwtE

D3
x (29.29)

effective reciprocating mass

Me = CmnρtD
2 (29.30)

resonant angular frequency

ωn = Cω
kwt

D3

√

E/ρ (29.31)

29.3.12 Linear Motors

As of Sage version 13, both phasor and time-ring linear motors are depre-
cated classes. They have been superseded by transducer components (section
25.6.1) which are electro-magnetic components that implement electrical current
through a connection to an electrical circuit rather than as an input.

29.3. DEPRECATED MOVING PARTS 371

A linear motor provides a reciprocating force as a function of electrical cur-
rent, which is an input. There is no detailed analysis of electromagnetic fields in
physical geometries — all the physics is collapsed into a single electromagnetic
force coefficient input. There are phasor and time-ring versions.

You can connect a linear motor to a reciprocating mass through a standard
force connection, just like you would a spring or damper. The motor will drive
the mass according to the current and force-coefficient inputs. In the time-
ring case, a spring is mandatory to determine the equilibrium position of the
reciprocating mass. Otherwise the solver will tend to drift around without
converging. Generally, even a very weak spring will do.

Within a larger model, a linear motor can drive a reciprocating mass which,
in turn, has a face area attached to the compression space gas. In the time-ring
case, besides a spring attached to the reciprocating mass, there must also be
a balancing area face on the other side of the reciprocating mass (opposite the
compression-space attachment), attached to a buffer space. Otherwise there
would be a great pressure-force imbalance on the piston which the spring would
have difficulty offsetting. This inconvenience is the price for realism.

Phasor Motor

TPhsrMtr

In the phasor motor, the current and resultant force are sinusoidal. Its effects
can be produced by the built-in forcing function input of a reciprocating mass,
although the motor component also calculates the electrical resistance (I2R)
losses in the coil. The motor is defined by four inputs:

Icoil : (phasor, A) Electrical current I in the coil.

Cf : (real, N/A) Force coefficient Cf produced by electromagnetic interaction.

Rcoil : (real, ohm) Electrical resistance R of the coil.

Inorm : (real, A) Current scale used to normalize Icoil for internal Sage purposes.

with a new output variable (besides those inherited from the ancestral moving
part component):

Wcoil : (real, W) Electrical resistance I2R losses in the coil.

The force produced by the motor is just the product of force coefficient and
current

F = CfI (29.32)

Time-Ring Motor

TGtMtr

In the time-ring motor the current is a Fourier series input and the force coeffi-
cient is a quadratic function of position. It can produce forces beyond the scope
of even a Fourier series forcing function. One option would be to play around
with the interaction between a nonlinear current and a nonlinear force coeffi-
cient, perhaps canceling each other out. Replacing the phasor-motor inputs Icoil
and Cf, the time-ring motor has the following inputs:

372 CHAPTER 29. SCFUSION DEPRECATED CLASSES

FIcoil : (Fourier series, A) Electrical current I in the coil.

Cf0 : (real, N/A) Force coefficient Cf0 at x = 0.

Xm : (real, m) Reference extension xm.

Rp : (real, dimensionless) Force-coefficient ratio Rp = Cf/Cf0 at x = xm.

Rn : (real, dimensionless) Force-coefficient ratio Rn = Cf/Cf0 at x = −xm.

As with the analogous inputs for a nonlinear spring, you can read Cf0, Xm, Rp,
Rn more-or-less directly, from a plot of Cf vs x generated either experimentally
or computationally, or more precisely from a best-fit parabola to the function
Cf (x) over the intended operating range.

The force produced by the motor is still the product of force coefficient and
current, as in equation (29.32), but now Cf is the quadratic function of position

Cf(x) = Cf0

[
1 + a(x/xm) + b(x/xm)2

]
(29.33)

where coefficients a and b are formulated in terms of inputs as

a = (Rp −Rn)/2 (29.34)

b = (Rp +Rn)/2 − 1 (29.35)

just as for the nonlinear spring stiffness function.

Relative Motors

TPhsrRelMtr

TGtRelMtr

The above linear motor components also come in relative-position versions — a
relative phasor motor and relative time-ring motor. They are just like their ab-
solute counterparts above, except they are connected between two moving parts
instead of between a moving part and ground (fixed inertial frame). The same
input variables and governing equations apply except that instead of applying
a single force to one or more moving parts attached to a single position coordi-
nate x they apply the force given by equation 29.32 to the moving part attached
to endpoint coordinate xpos and the negative of that force to the moving part
attached to xneg.

29.3.13 Motion Filters

TGtPhsr-
MotionFilter

TPhsrGt-
MotionFilter

There may be times when you want to connect a phasor moving part to a
time-ring moving part and vice-versa. Normally that is impossible because the
force connectors for the two are incompatible. Motion filters make it possible
although there is some loss of physical realism as a result.

There are two classes of motion filters. They both have built-in phasor and
time-ring force connections facing opposite directions but the orientations are
reversed. There are no input or output variables.

A motion filter forces the displacement grid of the time-ring moving compo-
nent it is attached to to have a sinusoidal displacement. To make that happen

29.3. DEPRECATED MOVING PARTS 373

it provides to that component whatever time-average or higher harmonic force
components are required to make it so. The phasor moving component attached
to the other side sees only the sinusoidal component of that force. In effect the
time-mean and higher harmonic force components are filtered out and do not
pass through a motion filter.

In physical terms a motion filter behaves like an infinitely heavy inertial mass
when it comes to higher harmonics of force but like an infinitely light inertial
mass when it comes to the fundamental sinusoidal force component. Obviously
that is not physically realistic but it may be a convenient simplification pro-
vided it is a reasonable approximation to assume that the moving component
connected to the phasor side moves sinusoidally.

These components are found in the Phsr Moving Parts component palette of
the root model and also the Springs and Dampers component palette of phasor
composite (piston-cylinder) components. This allows phasor moving parts in
these locations to be connected to time-ring components in other parts of the
model without the bother of replacing the phasor moving parts with time-ring
counterparts.

Usage Restrictions

There are some things you cannot do with motion filters.
You cannot connect a time-ring constrained piston to a phasor reciprocator.

That is because a time-ring constrained piston allows you to explicitly specify
non-zero higher harmonics for the motion. But that conflicts with the sinusoidal
displacement forced by a motion filter. On the other hand it is perfectly okay
to connect a phasor constrained piston to a time-ring reciprocator.

If you connect a time-ring reciprocator driven by non-sinusoidal forces to a
phasor reciprocator you must make sure the forces acting on the former deter-
mine its mean position. Generally that requires it to be anchored by a spring
component.

29.3.14 Piston-Cylinder Composites

Phasor Free-Piston and Cylinder

TPhsrRcpCyl

This component adds a built-in phasor reciprocating mass intended as the basis
for free-piston or free-displacer modeling. Choose this composite model when
you want to solve for the limit-cycle sinusoidal response according to Newton’s
equation of motion. Since overstroking is a distinct possibility, with potential
negative volumes in variable-volume gas domains, you will want to make sure
you know the proper combination of area attachments, springs, etc., before
choosing this model component.

Phasor Constrained Piston and Cylinder

TPhsrPisCyl

This component adds a built-in phasor constrained piston (or displacer) in-
tended for first-approximation kinematic modeling or free-piston design work.

374 CHAPTER 29. SCFUSION DEPRECATED CLASSES

The sinusoidal piston motion is now specified as input. Overstroking is no longer
a problem with this option. And by proper use of constraints you can set up an
optimization problem to solve for the proper combination of area attachments,
springs, etc., to make the piston run properly when you switch to free-piston
mode.

Phasor Free-Piston and Free-Cylinder

TPhsrRcp-
FreeCyl

This component is similar to the phasor free-piston component except it adds
another built-in phasor reciprocating mass representing the moving cylinder or
casing of a so-called “free cylinder” machine. The main reason for including
the moving cylinder in this component is so it can pass the relative motion
between the piston and cylinder to any annulus child components (see chapter
23) for purposes of calculating shuttle heat transfer. In free-cylinder machines
the cylinder and piston can both have large amplitudes with respect to a fixed
reference frame yet be moving almost in parallel so that the relative amplitude
between them is small. So it is important to calculate shuttle heat transfer
based on the relative piston motion, not absolute motion.

29.4 Deprecated Thermal Solids

29.4.1 Floating Isothermal Surface

TGxtFloat

This component was originally intended to be a faster version (in computational
time) of the quasi-adiabatic surfaces of chapter 17 for use as the primary surface
anchoring the gas temperature within a variable-volume space when the thermal
solution within the solid was not important. It is equivalent to the thin-surface
quasi-adiabatic model component in the limit of infinite thermal mass and zero
axial conduction. It presumes the positive z surface is subject to time-varying
sinusoidal heat flux, with zero mean. The negative z surface along with both
x and y surfaces are presumed insulated. It has a discretized temperature
distribution Ts(x) with no time variation. Ts serves as both the solid interior
temperature and the temperature at the positive z-surface. Sage implicitly
solves Ts to achieve zero net (time-mean) surface heat flux.

As it turned out, floating isothermal surfaces were not noticeably faster than
other quasi-adiabatic solids and the solid temperature would often drift to phys-
ically unrealistic values because of the lack of solid axial conduction. In some
cases this led to convergence problems. So the use of floating isothermal surfaces
is no longer recommended but they are still documented here for completeness
and available in the software for special purposes.

A floating isothermal surface receives its initial temperature distribution Ts

from its parent model component, but has no variables of its own to appear in
display windows or output listings. Everything you need to know about surface
heat transfer and temperature is available from the gas-domain component it is
connected to.

29.4. DEPRECATED THERMAL SOLIDS 375

29.4.2 Line Temperature Drop

TGxQdrop

This component was originally intended to provide a framework for including an
extra temperature drop between an isothermal heat source (external boundary
condition) and a distributed conductor representing a duct wall. The need for
this component was largely eliminated with the introduction of the independent
line heat source component, which provides an independent boundary tempera-
ture that can be optimized or recast as a dependent variable. Arguably the line
temperature drop can also be used to provide an additional temperature drop
between two conductive surfaces or distributed conductors but those compo-
nents also provide their own temperature drops, with the advantage that they
are solved according to physical principals rather than specified as inputs.

This component is a bit like a distributed conductor (section 17.7.2) except
instead of solving a temperature distribution as a function of heat flux, physical
dimensions and solid properties it simply imposes a fixed temperature drop
between negative and positive y-faces, regardless of heat flux. The temperature
drop is specified by independent cubic-spline input DeltaT, that may be recast
as a dependent variable based on external heat-transfer analysis implemented
in terms of user-defined inputs and variables.

A line temperature drop is born with two y-face heat-flow connectors and
has no provision for customizing the connectors via child-model attachments.

The solution domain has an axial center-line temperature distribution Ts(x),
discretized on a spatial grid, beginning at the negative x end and ending at the
positive x end. It also has two additional discretized temperature distributions
Tn(x) and Tp(x), parallel to T (x), centered in the negative and positive y faces.
There is no axial (x directed) heat flux. Transverse (y directed) heat fluxes qn

and qp at the negative and positive y faces are determined by adjoining compo-
nents. The center-line temperature distribution is implicitly solved according
to the condition that qn and qp are the same

qp − qn = 0 (29.36)

which is the equivalent of a steady solid energy equation ignoring axial conduc-
tion. Temperatures Tn and Tp are explicitly solved as

Tn = Ts −
∆T

2
(29.37)

and

Tp = Ts +
∆T

2
(29.38)

where ∆T is input DeltaT, interpolated to the location in the grid where ∆T is
evaluated.

Distributed conductor variables are:

Delta : (cubic spline, K) y-face temperature drop Tp − Tn.

QyNeg : (real, W) Net (x integrated) heat flow through negative y face.

376 CHAPTER 29. SCFUSION DEPRECATED CLASSES

QyPos : (real, W) Net heat flow through positive y face.

AEQy : (real, W) Available energy loss to y directed heat flow, according to
internal generation formula (17.2).

AEdiscr : (real, W) Available energy discrepancy of above two losses compared
to external generation as calculated by (17.1). (see section 17.3)

The sign of DeltaT is important. It should be positive for negative directed
heat flow and vice-versa. In physical terms this means heat flows from hot to
cold. If you get it backwards then this component will violate the second law
of thermodynamics and produce a negative available energy loss AEQy.

Bibliography

[1] M. M. Abbott, Cubic Equations of State: An Interpretive Review, in Equa-
tions of State in Engineering and Research, Advances in Chemistry Series
182, (1978)

[2] B.J. Abu-Ghannam and R. Shaw, Natural Transition of Boundary Layers
— The Effects of Turbulence, Pressure Gradient, and Flow History, J.
Mech. Engineering Science, V. 22, No. 5, pp. 213–228, (1980)

[3] R. Akhavan, R.D. Kamm and A. H. Shapiro, An Investigation of Transition
to Turbulence in Bounded Oscillatory Stokes Flows, Part 1. Experiments,
J. Fluid Mech. vol. 225, pp. 395-422, (1991)

[4] ASM ready reference. Electrical and magnetic properties of metals, Mate-
rials Properties Database Committee, ASM International, (2000)

[5] A. Bejan, Entropy Generation Through Heat and Fluid Flow, Wiley-
Interscience, (1982)

[6] F. J. Cantelmi, Measurement and Modeling of In-Cylinder Heat Transfer
with Inflow-Produced Turbulence, MS Thesis, Virginia Polytechnic Institute
and State University, June (1995)

[7] H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford at the
Clarendon Press, (1959)

[8] J.E. Coppage and A.L. London, Heat Transfer and Flow Friction Charac-
teristics of Porous Media, Chemical Engineering Progress, Vol. 52, No. 2,
pp. 57-63, Feb. (1956)

[9] J.H. Dymond and E.B. Smith, The Virial Coefficients of Gases, Clarendon,
(1969)

[10] E.R.G. Eckert and R.M Drake, Analysis of Heat Mass Transfer, McGraw-
Hill, (1972)

[11] D.K. Edwards and I. Catton, Prediction of Heat Transfer by Natural Con-
vection in Closed Cylinders Heated from Below, Int. J. Heat and Mass
Transfer, Vol. 12, pp. 23–30, (1969).

377

378 BIBLIOGRAPHY

[12] J.D. Felske, Approximate Radiation Shape Factors between Two Spheres,
ASME Journal of Heat Transfer, Vol. 100, pp. 547–548, Aug. (1978)

[13] D. Gedeon, Mean-Parameter Modeling of Oscillating Flow, ASME Journal
of Heat Transfer, Vol. 108, pp. 513–518, Aug. (1986)

[14] D. Gedeon, A Cylinder Heat Transfer Model, personal memorandum,
(Tmodel2.pdf), December (1989)

[15] D. Gedeon, An Approximate Cylinder Nusselt Number, personal memoran-
dum, (Tmodel3.pdf), December(1989)

[16] D. Gedeon, Advection-Driven vs Compression-Driven Heat Transfer, NASA
report under PO C-23433-R, Task 2, (AdvectionVsCompressionSansFig-
ures.pdf), May (1992)

[17] D. Gedeon, Cylinder Heat Transfer Update, personal memorandum,
(TModel4.pdf), October (1995)

[18] D. Gedeon and G. Wood, Oscillating-Flow Regenerator Test Rig: Hard-
ware and Theory with Correlelations for Screens and Felts, NASA-Lewis
Contractor Report 198422, (1996)

[19] D. Gedeon, Flow Streaming in Compliance Tubes, personal memorandum,
(FlowStreamingComplTubes.pdf) (1995)

[20] D. Gedeon, Sage Tortuosity Reformulation, personal memorandum (Sage-
TortuosityFormulation.pdf), February (2006)

[21] D. Gedeon, Random Fiber Data Reduction Results: porosities 85%, 90%
96%, personal memorandum (NASARandomFiberDataReduction.pdf),
January (2006)

[22] D. Gedeon, Random Fiber Correlations with Porosity Dependent Parame-
ters — Updated per New Tests at 90.9%, 93% and 96% Porosity, personal
memorandum (SageRandomFiberMasterCorrelationSept08.pdf), Septem-
ber (2008)

[23] D. Gedeon, Random Fiber Correlations with Porosity Dependent Parame-
ters — Updated per Revised Fiber Diameter for 90.9% Fecralloy Sample,
personal memorandum (SageRandomFiberMasterCorrelationNov08.pdf),
November (2008)

[24] D. Gedeon, Radiation Loss Modeling in Sage, personal memorandum (Ra-
diationLossModeling.pdf), January (2009)

[25] D. Gedeon, Flow Streaming in Compliance Tubes: Stabilized Interior For-
mulation, personal memorandum, (FlowStreamingComplianceTubesRevi-
sion.pdf) (2015)

BIBLIOGRAPHY 379

[26] D. Gedeon, Pulse-Tube Free Convection Vibratory Stabilization, personal
memorandum, (PtubeFreeConvectionVibratoryStabilization.pdf) (2015)

[27] D. Goldfarb, A. Idnani, A Numerically Stable Dual Method for Solving
Strictly Convex Quadratic Programs, Mathematical Programming, 27, pp.
1–33, (1983)

[28] Hands B.A., Cryogenic Engineering, Academic Press, Chapter 9, (1986)

[29] Heames T.J., Uherka D.J., Zabel J.C., Daley J.G., Stirling Engine Ther-
modynamic Analysis: A Users Guide to SEAM1, Argonne National Labo-
ratory, ANL-82-59, pp. 11–20, Sept. (1982)

[30] K.G.T. Hollands, Natural Convection in Horizontal Thin-Walled Honey-
comb Panels, Trans. ASME J. Heat Transfer, Vol. 95, pp. 439–444, (1973).

[31] J.P. Holman, Heat Transfer, Fourth Edition, McGraw-Hill (1976)

[32] E. Fried, I.E. Idelchik, Flow Resistance: A Design Guide for Engineers,
Hemisphere, (1989)

[33] D.C. Jiles and D.L. Atherton, Theory of Ferromagnetic Hysteresis, Journal
of Magnetism and Magnetic Materials 61, North-Holland, Amsterdam, pp.
48–60, (1986)

[34] V.J. Johnson, Properties of Materials at Low Temperature (Phase 1), Perg-
amon Press, (1961)

[35] W.M. Kays, A.L. London, Compact Heat Exchangers, 3rd Edition,
McGraw-Hill, (1984)

[36] C.J.C. Kruger, Constrained Cubic Spline Interpolation for Chemical Engi-
neering Applications, http://www.korf.co.uk/spline.pdf

[37] B.E. Launder and D.B. Spaulding, Mathematical Models of Turbulence,
Academic Press, (1972)

[38] K. Lee, A Simplistic model of Cyclic Heat Transfer Phenomena in Closed
Spaces, 18th IECEC, pp. 720–723, (1983)

[39] J.M. Lee, P. Kittel, K. D. Timmerhaus and R. Radebaugh, Flow Patterns
Intrinsic to the Pulse Tube Refrigerator, International Cryocooler Confer-
ence, (1992)

[40] M.A. Lewis and R. Radebaugh, Measurement of Heat Conduction through
Metal Spheres, in Cryocoolers 11, edited by R.G. Ross, Jr., Kluwer Aca-
demic/Plenum, pp. 419–425, (2001)

[41] Eric Lemmon, Mark McLinden, Marcia Huber, NIST Standard Reference
Database 23, NIST Reference Fluid Thermodynamic and Transport Prop-
erties — REFPROP, U.S. Dept. of Commerce, (2002)

380 BIBLIOGRAPHY

[42] Vitaly Leus and David Elata, Fringing Field Effect in Electrostatic Actua-
tors, Technical report ETR-2004-2, Technion – Israel institute of Technol-
ogy, (2004)

[43] I.F. Macdonald, M.S. El-Sayed, K. Mow and F.A.L. Dullien, Flow through
Porous Media – the Ergun Equation Revisited, Ind. Eng. Chem. Fundam.,
Vol. 18, No. 3, pp. 199–208, (1979)

[44] NIST Standard Reference Database 12, Thermophysical properties of pure
fluids, avaliable from http:\\www.nist.gov\srd, (1998)

[45] E. Oberg, F. D. Jones, Machinery’s Handbook, Seventeenth Edition, The
Industrial Press, (1964)

[46] J.R. Olson G.W. Swift, Acoustic streaming in pulse tube refrigerators: Ta-
pered pulse tubes, LA-UR-96-3083, (1996)

[47] S. V. Pantakar, W. E. Ibele, W. J Koehler Numerical Predictions of Tur-
bulent Oscillating Flow — Initial Studies, NASA-Lewis Progress Report,
(1989)

[48] R.P. Peyret and T. D. Taylor, Computational Methods for Fluid flow,
Springer-Verlag (1983)

[49] M. J. D. Powell, A Fast Algorithm for Nonlinearly Constrained Optimiza-
tion Calculations, in: Lecture Notes in Mathematics, 630, Numerical Anal-
ysis (Proc. Biennial Conf. at Dundee, 1977), Springer-Verlag (1978)

[50] W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical
Recipes, Cambridge, (1986)

[51] O. Redlich, J.N.S. Kwong, On the Thermodynamics of Solutions. V. An
Equation of State. Fugacities of Gaseous Soutions, Chemical Reviews, V
44, p. 233, (1949)

[52] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value
Problems, Interscience, New York, (1967)

[53] P.A. Rios, An Approximate Solution to the Shuttle Heat-Transfer Losses in
a Reciprocating Machine, ASME J. Eng. Power, pp. 177–182, (1971)

[54] R.G. Ross, Jr. and D.L. Johnson, Effect of gravity orientation on the ther-
mal performance of Stirling-type pulse tube cryocoolers, Space Cryogenics
Workshop, Girdwood, Alaska, September 2003.

[55] H. Schlichting, Boundary-Layer Theory, Seventh Edition, McGraw-Hill,
(1979)

[56] E. Schmidt, Thermodynamics, Dover, (1966)

BIBLIOGRAPHY 381

[57] J.R. Seume and T.W. Simon, Oscillating Flow in Stirling Engine Heat
Exchangers, 21st IECEC, (1986)

[58] J.R. Seume, An Experimental Investigation of Transition in Oscillating
Pipe Flow, Ph.D. Thesis, University of Minnesota, (1988)

[59] J. Seume, G. Friedman and T.W. Simon Fluid Mechanics Experiments in
Oscillatory Flow, NASA CR-189127, Lewis Research Center, (1992)

[60] T.W. Simon and J.R. Seume, A Survey of Oscillating Flow in Stirling
Engine Heat Exchangers, NASA 182108, (1988)

[61] T.W. Simon, M. Ibrahim, M. Kannapareddy, T. Johnson, G. Friedman,
Transition of Oscillatory Flow in Tubes: An Empirical Model for Applica-
tion to Stirling Engines, 27th IECEC, (1992)

[62] R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill,
(1972)

[63] E.M Sparrow and R.D. Cess, Radiation Heat Transfer, Brooks/Cole, (1970)

[64] G.W. Swift, Thermoacoustic Engines, J. Acoust. Soc. Am., 84 (4), pp.
1145–1180, (1988)

[65] G.W. Swift, Thermoacoustics: A Unifying Perspective for some Engines
and Refrigerators, Fourth draft, LA-UR-99-895, 1999

[66] G.W. Swift and S.N. Backhause, The pulse tube and the pendulum, J.
Acoust. Soc. Am, Vol. 126, No. 5 November 2009, pp. 2273–2284.

[67] G.W. Swift and S.N. Backhause, why High-Frequency Pulse Tubes Can Be
Tipped, Cryocoolers 16, edited by S.D. Miller and R.G. Ross, ICC Press
(2010), pp. 183–192.

[68] Y.S. Touloukian and C.Y. Ho, Thermophysical Properties of Matter, Pur-
due Research Foundation, Plenum Publishing Corp., (1970)

[69] N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and
Gases, Second Edition, Wiley, (1975)

[70] A.M. Wahl, Mechanical Springs, McGraw-Hill (1963)

Index

Symbols
ρb(T), 98
ρd(T), 98
ε(v, T), 98
A, 135, 238, 320
AEQ, 135, 254, 255, 323
AEQw, 141, 145, 152
AEQx, 137, 141, 145, 152
AEQy, 136, 141, 376
AEdiscr, 137, 141, 145, 152, 376
AEfric, 152, 225
Acoil, 272
Aflow, 194, 225
Alpha, 272
An, 323
Ap, 323
Apath, 278
Aratio, 230
Areduc, 227
Asec, 194
Asolid, 189
Avoid, 189
Awire, 272
Bmult, 213
Br, 320
Br(T), 263
BrNeg, 323
BrPos, 323
C, 265
Ca, Cr, Cs, Cw, Cm, 366
Cd, 227
Cf, 371
Cf0, 287, 372
Cfx, 288
Cmult, 213
Conductivity, 95, 130
Conductor, 272

Cp(v, T), 98
D, 107, 110, 125, 136, 140, 144, 366
DCRhoUA, 232
DPstdy, 232
DTfull, 249
Dcan, 226
Dcentroid, 271
Dcyl, 328, 329, 334
DcylInner, 332
DcylOuter, 332
Delta, 375
DemagLimit, 281
Density, 130, 262
Dfiber, 198
Dhyd, 202
Din, 190–192
Dliner, 258
Dorf, 227
Dout, 191, 192
Dshell, 258
Dskin, 145
Dsphere, 200, 226
Dtube, 203, 212
Dwire, 197, 271
E, 366
EOSErrMean, 154
Efficiency, 238
EfluxErr, 292
Emiss, 320
Emmis, 255
Eratio, 114
F, 106, 363
FA, 323
FAmult, 323
FB, 278, 281
FBflux, 273, 292
FBfluxAir, 290

382

INDEX 383

FDP, 153, 225, 244
FDeltaPsi, 273
FDeltaV, 263, 265, 273
FDeltaVem, 273
FF, 108, 364
FFm, 292
FH, 226, 244, 249, 278, 280
FHmean, 153
FHneg, FHpos, 238
FI, 263, 265, 273
FIcoil, 372
FJ, 282
FM, 153
FOmega, 110
FP, 225, 244, 249
FPMean, 152
FPNeg, 152
FPPos, 152
FPsi, 280
FPsiNeg, 278
FPsiPos, 278
FQNeg, 131, 133
FQPos, 131, 133
FQcombust, 151
FQhtr, 133
FQwNet, 145, 151
FRestrict, 231
FRhoUA, 226, 244, 249
FRhoUANeg, 153
FRhoUAPos, 153
FRhoUAmean, 153
FT, 131, 133, 225, 244, 249
FTMean, 152
FTorque, 110, 111
FTsMean, 145
FUtilization, 281, 299, 312
FV, 153, 263, 265
FVneg, 263, 273
FVpos, 263, 273
FW, 110, 273
FWc, 238, 244
FWe, 263
FWm, 273, 278, 290
FWmLinked, 291
FX, 108, 123, 244, 249
FdC1, 202

FdC2, 202
FdC3, 202
FdM, 202
Fdrag, 120
FillFac, 294
Fmult, 150, 225
Fneg, 109, 364
Fpos, 109, 364
Freq, 94
FreqNorm, 94
FringeMult, 289
FsC1, 202
FsC2, 202
Fself, 320
Fx, 119
Gap, 200, 253
Gas, 94
Gmult, 213
GvibMean, 213
HNeg, 152
HPos, 152
Hcb(T), 263
Hchan, 205
Hcj(T), 263
Hcyl, 330
Hmult, 150
IMoment, 110
Icoil, 371
Inorm, 371
Isat, 266
Jmult, 281
Jsat(T), 262
K, 107, 109
K(v, T), 98
K0, 118
Ka, 367
Kfrac, 123
Kjh, 263
Klocal, 151, 155
Kmult, 144, 151
KmultBnd, 151, 174
Kr, 366
KrC1, 202
KrC2, 202
KrM, 202
KrN, 202

384 INDEX

L, 135, 266
Lambda, 145
Lcoil, 272
Length, 189, 193, 226, 253, 258, 291,

292, 342
LinkMult, 272
Lnorm, 93
Lpath, 278
Lpole1, 289
Lpole2, 289
Lratio, 113, 114, 365
Lwire, 272
M, 366
MachMean, 153, 226
Mass, 108, 136, 140, 144, 189, 291, 364
Material, 278
Me, 367
MinRestrict, 231
Mmag, 278
Mscale, 122
Mu(v, T), 98
Mur(T), 262
Mwire, 273
N, 366
NCell, 92, 189, 193, 258, 292, 342, 343
NTnode, 92, 93, 112
Nchan, 205
Ntube, 203
Nturns, 271
NuC1, 202
NuC2, 202
NuM, 202
NuN, 202
Offset, 291
Omega, 94
PV, 151
PVNeg, 152
PVPos, 152
Pcharge, 94, 150
Phase, 111, 365
Pnorm, 94
Popen, 230
Porosity, 194, 226
Pwet, 194, 225
QNeg, 131, 133, 135, 152, 254, 255, 320
QPos, 131, 133, 135, 152, 254, 255, 321

QfreeMean, 213
Qhtr, 133, 134
QmolMean, 213
Qnorm, 94
QoscMean, 213
QstrMean, 213
QturbMean, 213
QwMean, 249
QwNeg, 152
QwNet, 132, 134, 141
QwPos, 152
QxMean, 152
QxNeg, 136, 141, 145
QxPos, 136, 141, 145
QyNeg, 131, 134, 136, 141, 322, 375
QyPos, 131, 134, 136, 141, 322, 376
R, 265
Rad, 320
RadNeg, 323
Rclearance, 241
Rcoil, 272, 371
Rcrank, 111, 365
ReMean, 153, 226
Recov, 229
Rfwd, 266
Rgas, 95
Rho, 366
Rn, 118, 287, 372
Roughness, 193
Rp, 118, 287, 372
Rrev, 266
Rs(T), 262
Sc, 367
Sepr, 324, 326, 327, 329, 332, 334
Sm, 366
Smult, 213
Sn, 122
Solid, 135, 136, 140, 144, 190
Sp, 122
Specific heat, 95, 130
Sratio, 208
Swet, 208
T, 131, 133, 366
T0, 95, 98
TMean, 134
TNeg, 134, 152

INDEX 385

TPos, 134, 152
TbInNeg, 151, 177
TbInPos, 151, 177
TbMean, 153
Tcoil, 272
TdMean, 153
Te, 322
Tfin, 207
ThetaN, 324
ThetaP, 324
Thk, 200
ThkLam, 278
TiltAngle, 213
Tinit, 185, 190, 194, 225, 244, 248, 258,

342, 343
Tm, 278
Tmult, 213
Tn, 367
Tnorm, 92, 94
Tortuosity, 141, 145
Ts, 320
TsNeg, 135, 137, 141, 145, 253, 255
TsPos, 135, 137, 141, 145, 254, 255
Tsrc, 132
TurnRatio, 268
TwStdy, 249
Twall, 194, 212
UpwindFrac, 151, 166
VaMean, 153
Vcoil, 272
Vdot, 241
Viscosity, 95
Vmean, 152
Volume, 208
Vrel, 120
Vwire, 272
W, 107, 109, 136, 140, 366
Wcan, 190, 191
Wchan, 205
Wcoil, 371
Wdissip, 272
Win, 191, 192
Wnet, 363, 364
Wpole, 289
X, 364
XNeg, 253

XPos, 253
Xamp, 364

Xgap, 289

Xlimit, 122
Xm, 118, 287, 372

XnegRel, 292

Xphase, 364
XposRel, 292

Z(v, T), 98

ZMean, 153
Zgap, 289

ZthkRel, 292
wn, 366

A

adiabatic compressor

as expander, 237
convergence issues, 237, 238

energy balance, 239

entropy continuity, 240
ideal-gas PV power, 240

pulsatile flows, 238

PV power, 237
theory, 239

air gap, 281
moving, 299

Ampere’s law, 274

annulus shuttle/seal/appendix, 253
appendix gap flow, 253

available energy, 91, 130, 150

balance principle, 92
discrepancy, 92

loss, 91

axial conduction
channels, 207

cylinder, 210

fins, 208
foil, 201

generic, 203

random fibers, 199
screens, 198

spheres, 200

tubes, 205
axial conductivity enhancement, 212

386 INDEX

B

bar conductor, 135
Bernoulli’s law, 159, 168
bicubic spline, 97
Boltzmann constant, 335
boundary convection, 217

C

canister, 189
annular, 190
annular-cone, 192
tubular, 190
tubular-cone, 191

capacitor, 265
clearance seal flow, 253
CmplDucts, 211
coil

fixed, 273
moving, 293, 296

combustion heating, 164
combustion-space gas domains, 155
complex

formulations, 63
friction factor, 160
Nusselt number, 161, 162
variables, 57

compliance tube
tapered, 211

composite model components, 257
compressibility, 96, 100
compressor

pressure regulated, 242
adiabatic, 237
volumetric flow, 240

computational grids, 76
condenser, 248

theory, 249
conduction

enhanced, 196
conduction continuity, 169
conductive surface, 137
conductivity, 96
connection block, 264, 280
connections, 53

arrows, 51
changing level, 53

meaning of, 80
structure, 6
types, 81

constants, 26
constrained piston, 108, 364
constrained piston and cylinder, 258, 373
constraints

active, 44
infeasible, 47
overdetermined, 48
specifying, 44

container, 341
multi-length, 343
parallel, 342

continuity equation, 156, 158, 159
control volumes, 165

and accuracy, 222
min resolving pressure drop, 166

convective triggering, 175
coordinates

gas domain, 148
thermal solid, 128

criconden point, 101
cubic splines, 64
current source, 265
custom variables, 37

copy and paste, 39
cylinder, 208

D

damper, 107, 363
negative, 125
relative, 110, 365
stick-slip, 120
stick-slip relative, 121

data pairs, 64
DC flow, 229
density, 186, 234, 244, 249

connections, 89, 147
diagnostics

optimizer, 46
solver, 26

dimensional units, 24
diode, 266
discharge coefficient, 228
disk files, 4, 21

INDEX 387

displacer
constrained, 373
free, 373, 374
kinematic, 259
regenerative, 257

display
add page, 13
print, 13
remove all, 13
remove page, 13

display form, 23
distributed conductor, 135
drivable variables, 73
driver, 125
duct gas domains, 154

E

eddy currents, 313
edit

change bitmap, 14
copy model, 14
cut model, 14
delete model, 14
down connector, 14
paste model, 14
print, 15
select all, 13
up connector, 14

edit form, 21, 51
levels, 52
palette, 52

electrical current connections, 89
electromagnetic components, 261

connections, 261
materials, 262

energy density, 97, 186, 235, 245, 250
energy equation, 156, 158, 159
energy flow continuity, 169
enhanced axial conduction, 164
enthalpy flow continuity, 169
entropy, 91, 97

gas domain, 149
thermal solid, 129

enumerated variables, 65
equation of state

error, 97

ideal, 95
in gas domain, 165
tabular, 97

automatic data entry, 353
manual data entry, 352

evaporator, 248
theory, 249

export level, 72
expressions, 67

built-in functions, 70
case, 68
compiling, 68
constants, 69
identifiers, 68
model-specific functions, 70
operators, 69
parenthesis, 69
parsing, 30, 67
qualifiers, 71
scope of variables, 71
self referencing, 72
spaces, 68
syntax, 68
variables, 71

F

Faraday’s law, 275
ferromagnetic material

moving, 301
nonmagnetic conductor, 283
soft, 282

file
listing, 12
new, 11
open, 11
save, 11
save CAD variables, 12
save embedded properties, 13
save log variables, 12
save solution grid, 12, 23
save-as, 12

film heat transfer, 160
flexure

axial stiffness, 368
effective mass, 369
radial stiffness, 369

388 INDEX

resonant frequency, 370
springs, 365
stack, 366
stack couple, 367
theory, 367
torsional stress, 369
turning angle, 368

floating isothermal surface, 374
flow

area, 226, 234
connections, 89, 147
inlets, 171
velocity, 236

flow restrictor, 225
asymmetric sharp-edged, 229
check valve, 230
DC flow blocking, 232
mass-flow driver, 233
mass-flow pump, 233
sharp-edged, 227
sintered powder plug, 226
time-dependent valve, 231

flow reverser, 185
theory, 185

flow separator, 243
theory, 244

flywheel, 110
attachments, 111

force connections, 89, 105, 147
Fourier series, 59

accuracy, 60
free convection, 214
free-piston and cylinder, 258, 259, 373,

374
friction factor

channels, 206
cylinder, 209
fins, 208
foil, 201
generic, 203
random fibers, 199
screens, 197
spheres, 200, 226
tubes, 204
wall shear stress formulation, 160

G

gas constant, 351
generic cylinder, 208
generic matrix, 202
grids, 76

full-harmonic differencing, 79
saving to file, 12, 23
spatial, 77
time ring, 79, 105

H

heat conductor
bar, 135
distributed, 135
surface, 137

heat flow connections, 89, 127
heat sink, see heat source, see heat source
heat source, 131, 133

independent line, 132
independent surface, 132
line, 131, 133
point, 131, 133
surface, 132, 134
time-grid, 131, 133

heat transformer, 343
help

about, 19
PDF manual, 19
sample models, 19

hydraulic diameter, 154, 226

I

icons
positioning, 52

ideal gas, 95
inductor, 266
initialization files, 4, 21
inputs, 24

user defined, 35
installing, 3
integer variables, 57
interpolation, 78

order, 77, 166
isothermal surface, 132, 134

K

kinematic linkages

INDEX 389

rhombic drive, 114
Scotch yoke, 112
simple crank, 113

L

line temperature drop, 375
linear motors, 370
listings, 6, 12, 22
log files, 41, 45

M

magnet
moving, 299
permanent, 281

magnetic
containers, 291
gaps, 289
moving, 292

magnetic components
moving, 298

magnetic field
source, 280

magnetic flux
connections, 89
source, 281

magnetic potential, 276
reference, 280

magnetomotive force, 276
mapping, 41
mass flow rate, 235, 250
matrix gas domains, 154
menu commands, 11
mixtures, 355
model

class, 5
component, 5

active, 11, 22, 23
change bitmap, 55
creating, 52
cut and paste, 54
selecting, 52

editing, 51
structure, 76
tree structure, 52–54
trees, 6
views, 22

molecular conduction, 212
momentum equation, 156, 158, 159
momentum flow continuity, 168
motion filters, 372
motors

linear, 370
moving part

attachments, 106, 362
relative, 109, 364
variables, 106, 363

moving parts, 105
deprecated, 362

N

Newton’s method, 82
nonlinear programming problem, 43
normalization scale factor

specifying, 49
numerical diffusion, 222
Nusselt number

channels, 207
cylinder, 209
fins, 208
foil, 201
generic, 203
random fibers, 199
screens, 197
spheres, 200
tubes, 204

O

objective function
specifying, 44

optimization, 7, 43, 82
degrees of freedom, 44
ill conditioned , 47
line search, 47
multiple extrema, 48
non convergence, 46
pseudo-Lagrangian, 45
running, 45

optimization variables
specifying, 43
step limits, 46
weakly-determined, 47

options

390 INDEX

model class, 19
Sage, 19

orifice, see flow restrictor

P

packed sphere matrix, 200
palette, 52
parasitics, 253
Pascal, 83
Peclet number, 195
phasor variables, 58
piston

constrained, 373
free, 373, 374
kinematic, 259

piston-cylinder composites, 257, 373
plot solution grid, 17, 19
popup menus, 19
porosity, 195
power probe, 268
Prandtl number, 96, 195
pressure

connections, 89, 105, 147
indeterminate mean value, 166
source component, 150

pressure drop
resolving, 166

process
map, 17
optimize, 18
parse mapping, 18
parse optimization, 18
parse solution, 18, 30
reinitialize, 18
solve, 17

properties
auto-update, 349
changing, 349
cubic-spline interpolation, 349
data files, 345, 348
gas, 94, 351
modifying, 348
referenceable, 345
saving to file, 13
thermal solid, 349
thermal solids, 130

two-phase fluids, 102, 359
property data files, 348
PV power flow, 164

Q

quality of vapor, 101
quasi-adiabatic surface, 141

R

radiation attachments, 321, 322
radiation configuration, 323

coaxial cylinders, 330, 331
collinear cylinders, 329
concentric spheres, 325
disk to cylinder, 327, 328, 333
generic, 323
parallel disks, 326
planar elements, 324
separated spheres, 325

radiation surface, 320
distributed temperature, 321
lumped temperature, 320

radiation transport path, 255
random fiber matrix, 198
real variables, 57
recast variables, 31

exploring, 37
reciprocating mass, 108, 363
recovery area ratio, 229
rectangular channels, 205
rectangular fins, 207
RefpropToSage, 353
resistor, 265
resonant system, 51, 87
Reynolds number, 154, 226

turbulent, 184
rhombic drive mechanism, 114
rigorous surface, 146
root component, 93
rotary mechanisms, 110

S

Sage architecture, 75
sample files, 87
scan

comments, 15

INDEX 391

constraints, 15
input values, 15
mapped variables, 15
optimized variables, 15
recast variables, 15
user inputs, 15
user variables, 15

Scotch yoke mechanism, 112
shuttle heat transfer, 253
simple crank mechanism, 113
simple crank piston, 365
simple-crank piston and cylinder, 259
snubber, 122

relative, 125
solving, 7, 25, 82

non convergence, 26
reinitializing, 26
RMS error function, 26

sonic velocity, 96
spatial differencing, 77
specific heat, 96
specify

comment, 16
constraints, 16, 44
input values, 16
mapped variables, 16
model order, 17
normalization scale factor, 49
objective function, 16, 44
optimization variables, 43
optimized variables, 16
plot solution grid, 17
recast variables, 16
rename, 16
user inputs, 16
user variables, 16

spring, 107, 363
flexure, 365
interpolated, 119
interpolated relative, 120
nonlinear, 118
nonlinear relative, 119
relative, 109, 364

staggered grid, 165
Stefan-Boltzmann constant, 335
streaming convection, 218

submodels, 341

T

T[...] model component classes
TAnnCan, 190
TAnnulus, 253
TAnnxCan, 192
TAsyOrfRstr, 229
TCheckRstr, 230
TCoilEMov, 293
TCompressor, 237
TDriver, 233
TEmbdAirGap, 299
TEmbdPermMag, 299
TEmbdSoftMag, 301
TEMovContainer, 291
TFbrMtx, 198
TFinDct, 207
TFoiMtx, 200
TGnrCyl, 208
TGnrMtx, 202
TGtAirGap, 281
TGtBsrc, 281
TGtCoil, 273
TGtCrankLnk, 113
TGtCrankPis, 365
TGtCrankPisCyl, 259
TGtDmp, 107
TGtDrv, 125
TGtEblk, 264
TGtEcap, 265
TGtEdiode, 266
TGtEind, 266
TGtEprobe, 268
TGtEres, 265
TGtEvap, 248
TGtFlywheel, 110
TGtFricDmp, 120
TGtHeater, 133
TGtHsrc, 280
TGtIsrc, 265
TGtLturnGap, 289
TGtMblk, 280
TGtMref, 280
TGtMtr, 371
TGtNonMag, 283

392 INDEX

TGtPermMag, 281
TGtPhsrMotionFilter, 372
TGtPis, 108
TGtPisCyl, 258
TGtQsrc, 131
TGtRcp, 108
TGtRcpCyl, 258
TGtRcpFreeCyl, 259
TGtRelSnubber, 125
TGtRelDmp, 110
TGtRelFricDmp, 121
TGtRelMtr, 372
TGtRelSnl, 119
TGtRelSpr, 109
TGtRevrsNeg, 185
TGtRevrsPos, 185
TGtRhombicLnk, 114
TGtRturnGap, 289
TGtSepr, 243
TGtSnl, 118
TGtSnubber, 122
TGtSoftMag, 282
TGtSPGap, 289
TGtSpr, 107
TGtTPGap, 289
TGtTransformer, 268
TGtVref, 264
TGtVsrc, 265
TGtYokeLnk, 112
TGxHeater, 133
TGxQcnd, 135
TGxQdrop, 375
TGxQsrc, 131
TGxQsrcInd, 132
TGxQtransformer, 343
TGxRsurf, 321
TGxt...DctGas, 154
TGxt...MtxGas, 154
TGxtCmbCylGas, 155
TGxtFloat, 374
TGxtGnrCylGas, 155
TGxtHeater, 134
TGxtMedWall, 146
TGxtQcnd, 137
TGxtQsrc, 132
TGxtQsrcInd, 132

TGxtThkWall, 146
TGxtThnWall, 146
TLcoilEMov, 296
TOrfMembr, 232
TOrfRstr, 227
TPermMagEMov, 298
TPhsrDmp, 363
TPhsrFlx, 366
TPhsrFlxCpl, 367
TPhsrGtMotionFilter, 372
TPhsrMtr, 371
TPhsrPis, 364
TPhsrPisCyl, 373
TPhsrRcp, 363
TPhsrRcpCyl, 373
TPhsrRcpFreeCyl, 374
TPhsrRelDmp, 365
TPhsrRelMtr, 372
TPhsrRelSpr, 364
TPhsrSpr, 363
TPump, 233
TQrad, 255
TrcCoaxCylNP, 330
TrcCoaxCylPN, 330
TrcColinCyl, 329
TrcConcSphNP, 325
TrcConcSphPN, 325
TrcCylDskNP, 333
TrcCylDskPN, 333
TrcDskCylNP, 327
TrcDskCylPN, 327
TrcEndCylNP, 328
TrcEndCylPN, 328
TrcGeneric, 323
TrcOffsetCylNP, 331
TrcOffsetCylPN, 331
TRcoilEMov, 296
TrcParallDsk, 326
TrcPlanarElmts, 324
TrcSeprSph, 325
TRecDct, 205
TRegCompressor, 242
TRelSprFx, 120
TSCFContainer, 342
TSCFMLContainer, 343
TSCFusionSubmodel, 341

INDEX 393

TScnMtx, 197
TSphMembr, 232
TSphMtx, 200
TSphRstr, 226
TSprFx, 119
TStdyHeater, 133
TStdyPsrc, 150
TStdyQcnd, 135
TStdyQsrc, 131
TStdyRsurf, 320
TTubCan, 190
TTubComplDct, 211
TTubDct, 203
TTubxCan, 191
TTubxComplDct, 211
TValveRstr, 231
TVdotCompressor, 240
TXducer, 286
TXducerCfX, 288

temperature drop, 375
thermal

dispersion, 196
penetration depth, 143
radiation, 319
wavelength, 145

thermal solids, 127
deprecated, 374

thick surface, 146
thin surface, 146
time differencing, 79
time ring, see grids
tools

explore custom variables, 18
explore optimization, 18

tortuosity, 140, 142, 195
foil, 201
generic, 203
random fibers, 199
screens, 198
spheres, 200

transducer, 286, 288
transformer, 268
tube bundle, 203
turbulence

conduction, 196, 214
intensity, 176

kinetic energy, 184
models, 174

two-phase fluid properties, 102, 359

U

units, 24
user inputs, 35

exploring, 37
user variables, 28

CAD files, 12, 30
exploring, 37
export level, 30, 72
log files, 12, 30, 41, 45

V

Valensi number, 154
variable-volume gas domains, 155
variables

complex, 57
cubic spline, 64
data pairs, 64
drivable, 73
enumerated, 65
Fourier series, 59
integer, 57
phasor, 58
real, 57
saving to file, 12
smart, 75

viscosity, 96
viscous pressure drop, 227
viscous pressure gradient, 159
voltage

reference, 264
source, 265

W

wetted perimeter, 154, 226
woven screen matrix, 197
wrapped foil matrix, 200

	Preface
	I Getting Started with Sage Software
	Installation
	Computer Requirements
	Installing
	Un-Installing
	Files

	Overview
	What is Sage
	What are Models
	Models as Trees
	Models as Interconnected Systems

	Numerical Input and Output
	Solving, Mapping and Optimizing

	II Sage General Reference
	Menu Commands
	File
	File|New
	File|Open
	File|Save
	File|Save As
	File|Listing
	File|Save Solution Grid
	File|Save Log Variables
	File|Save CAD Variables
	File|Save Embedded Properties

	Display
	Display|Add Page
	Display|Remove Page
	Display|Remove All
	Display|Print Display

	Edit
	Edit|Select All
	Edit|Up Connector
	Edit|Down Connector
	Edit|Cut Model(s)
	Edit|Copy Model(s)
	Edit|Paste Model(s)
	Edit|Delete Model(s)
	Edit|Change Bitmap
	Edit|Print Form

	Scan
	Scan|Input Values
	Scan|User Inputs
	Scan|User Variables
	Scan|Recast Variables
	Scan|Mapped Variables
	Scan|Optimized Variables
	Scan|Constraints
	Scan|Comments

	Specify
	Specify|Input Values
	Specify|User Defined Inputs
	Specify|User Defined Variables
	Specify|Recast Variables
	Specify|Mapped Variables
	Specify|Optimized Variables
	Specify|Constraints
	Specify|Objective Function
	Specify|Rename
	Specify|Comment
	Specify|Child-Model Order
	Specify|Plot Solution Grid

	Process
	Process|Solve
	Process|Map
	Process|Optimize
	Process|Parse Solution
	Process|Parse Mapping
	Process|Parse Optimization
	Process|Reinitialize

	Tools
	Tools|Explore Optimization
	Tools|Explore Custom Variables

	Options
	Options|Sage
	Options|Model Class

	Help
	Help|PDF manual
	Help|Sample Models
	Help|About

	Popup Menus

	Working with Models
	Data Files
	Viewing Model Structure
	Viewing Model Data
	Listings
	Display Form
	Solution Grid Variables

	Numerical Input
	System of Units
	Solving
	Solver Diagnostics
	User Variables
	Recast Variables
	What Variables are Recastable?
	Note on Dimensional Units

	User Inputs
	Identifier Visibility
	Exploring Custom Variables

	Mapping
	Optimizing
	Specifying Optimization Variables
	Specifying Constraints
	Specifying the Objective Function
	Running An Optimization
	Diagnostics
	Variable Step Limits
	Line-Search Step Reductions
	Ill-Conditioned Problems
	Multiple Extreme Points
	Normalization Values

	Editing Model Structure
	Basic Operations
	Selecting Components
	Positioning Icons
	Navigating the Model Tree

	Component Palette
	Connections
	Changing Connector Level
	Cut and Pasting Model Components
	Copy
	Cut
	Delete
	Paste

	Changing Model Component Bitmaps

	Variable Types
	Integers
	Reals
	Complex
	Phasors
	Fourier Series
	Discrete Representations
	Complex Solution Formulations

	Data Pairs
	Cubic Splines
	Enumerated

	Entering Algebraic Expressions
	Ground Rules
	Identifiers
	Operators
	Constants
	Built-In Functions
	Model-Specific Functions
	Referenceable Variables and Qualifiers
	Variable Scope

	Specifying Drivable Variables
	Behind the Scenes
	Smart Variables
	Smart Models
	Grids
	Spatial Grids
	Time Grids

	Connecting Things Together
	Solving
	Optimizing
	Delphi Spoken Here

	III SCFusion Model Classes
	Overview and Tutorial
	Boundary Connections
	Force Connections
	Pressure Connections
	Heat Flow Connections
	Gas Flow Connections
	Density Connections
	Electrical Current Connections
	Magnetic Flux Connections

	Entropy Generation
	Lost Available Energy
	Second-Law Balance

	SCFusion Root Component
	Working Gas
	Ideal Gas Physics
	Tabular Gas Physics
	Auxiliary Property Tables
	Critical Point Meaning
	Vapor Quality
	Transport Property Encoding in Two-Phase Region

	Moving Parts
	Boundary Connections
	Moving-Part Attachments
	Moving-Part Variables
	Generic Spring
	Generic Damper
	Reciprocating Mass
	Constrained Piston
	Relative Moving Parts
	Relative Springs
	Relative Dampers
	Rotary Mechanisms
	Flywheel
	Kinematic Linkages
	Rotary Mechanism Theory

	Nonlinear Spring
	Relative Nonlinear Spring
	Interpolated Spring
	Relative Interpolated Spring
	Stick-Slip Damper
	Relative Stick-Slip Damper
	Motion Snubber
	Relative Motion Snubber
	Free Driver

	Thermal Solids
	Attachment Child Components
	Coordinate Conventions
	Entropy Generation
	Thermal Properties
	Fixed Temperature Heat Sources
	Point Heat Source
	Time-Grid Heat Source
	Line Heat Source
	Independent Line Heat Source
	Isothermal Surface
	Independent Isothermal Surface

	Fixed Heat Flow Sources
	Point Heater
	Time-Grid Heater
	Line Heater
	Surface Heater

	Heat Conductors
	Bar Conductor
	Distributed Conductor
	Conductive Surface

	Quasi-Adiabatic Surfaces
	Thick Surface
	Thin Surface
	Rigorous Surface

	Gas Domains
	Attachment Child Components
	Coordinate Conventions
	Entropy Generation
	Pressure Source Component
	Gas Domain Components
	Matrix Gas Domains
	Duct Gas Domains
	Variable-Volume Gas Domains
	Combustion-Space Gas Domains

	Gas Domain Theory
	Viscous Pressure Gradient F
	Film Heat Transfer Qw
	Combustion Heating Qc
	Gas Axial-Conduction Heat Flow q
	PV Power Flow
	Equations of State
	Solution Method

	Flow Connector Theory
	Bernoulli's Law
	Energy Continuity

	Turbulence Models
	Matrix Gas Domains
	Duct Gas Domains
	Variable Volume Gas Domains

	Flow Reversers
	Theory

	Canisters
	Tubular Canister
	Annular Canister
	Tubular-Cone Canister
	Annular-Cone Canister

	Heat Exchangers
	Solid Tortuosity
	Gas Axial-Conduction Enhancement

	Woven Screen Matrix
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement
	Tortuosity

	Random Fiber Matrix
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement
	Tortuosity

	Packed Sphere Matrix
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement
	Tortuosity

	Wrapped Foil Matrix
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement
	Tortuosity

	Generic Matrix
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement
	Tortuosity

	Tube Bundle
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement

	Rectangular Channels
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement

	Rectangular Fins
	Generic Cylinder
	Length
	Friction Factor
	Nusselt Number
	Axial-Conduction Enhancement

	Compliance Ducts
	Duct Geometries
	Compliance Tube
	Tapered Compliance Tube

	Compliance Duct Gas Domains
	Turbulent Conduction
	Free Convection
	Boundary Convection
	Streaming Convection

	Numerical Diffusion
	Quantitative Estimates
	Interpretation in terms of Refrigeration Power

	Flow Restrictors
	Sintered Powder Plug
	Sharp-Edged Orifice
	Low-Reynolds Linearization
	Choked Flow

	Asymmetric Sharp-Edged Orifice
	Check Valve
	Time-Dependent Valve
	DC Flow Blocking Restrictors
	Mass-Flow Pump
	Mass-Flow Driver
	Flow Restrictor Theory
	Adiabatic Compressor
	Theory

	Volumetric Flow Compressor
	Pressure-Regulated Compressor
	Flow Separator
	Theory

	Evaporator-Condenser
	Theory

	Miscellaneous Parasitics
	Annulus (Shuttle/Seal/Appendix)
	Theory

	Radiation Transport Path
	Theory

	Composite Model Components
	Piston-Cylinder Composites
	Free-Piston and Cylinder
	Constrained Piston and Cylinder
	Simple-Crank Piston and Cylinder
	Time-Ring Free-Piston and Free-Cylinder

	Electromagnetic Components
	Connection Child Components
	Electromagnetic Materials
	Simple Electrical Components
	Common Variables
	Connection Block
	Voltage References
	Voltage Source
	Current Source
	Resistor
	Capacitor
	Inductor
	Diode
	Power Probe
	Ideal Transformer
	Solution Method

	Coil Components
	Fixed Coil

	Magnetic Components
	Common Variables
	Magnetic Connection Block
	Magnetic Potential Reference
	Magnetic Field Source
	Magnetic Flux Source
	Air Gap
	Permanent Magnet
	Soft Ferromagnetic Material
	Non Magnetic Material
	Solution Method

	Linear Motors, Alternators, Actuators
	Simple Transducer
	Interpolated Transducer
	Magnetic Gaps
	Moving Electromagnetic Container
	Moving Electromagnetic Components
	Moving Coils
	Moving Magnetic Components
	Solution Method

	Magnetic Material Physics
	Soft Ferromagnetic Materials
	Permanent Magnets
	Eddy Currents

	Radiation Exchange Components
	Sample Radiation Enclosures
	Radiation Surface Components
	Lumped Radiation Surface
	Distributed Radiation Surface

	View-Configuration Components
	Generic Configuration
	Planar Elements
	Concentric Spheres
	Separated Spheres
	Parallel Disks
	Disk to Inside of Cylinder with Same Radius
	Inside of Cylinder to Disk Within Base or Top
	Collinear Cylinders
	Coaxial Cylinders of Same Height
	Offset Cylinders of Different Diameter
	Outside of Cylinder to Offset Disk with Larger Radius

	Radiation Exchange Theory
	Net Surface Radiation Heat Transfer
	Sage Solution Scheme
	Distributed Temperature Surface Components

	Submodels and Containers
	Submodels
	Containers
	Parallel Container
	Multi-Length Container

	Material Properties
	Referenceable Properties
	Material Property File Utilities
	Changing Properties with SCFProp
	Entering TBspline3Gas data with RefpropToSage

	SCFusion Deprecated Classes
	Deprecated Gas Classes
	Tabular Gases

	Redlich-Kwong Gases
	Deprecated Moving Parts
	Moving-Part Attachments
	Moving-Part Variables
	Generic Spring
	Generic Damper
	Reciprocating Mass
	Constrained Piston
	Relative Moving Parts
	Relative Springs
	Relative Dampers
	Simple Crank Piston
	Flexure Springs
	Linear Motors
	Motion Filters
	Piston-Cylinder Composites

	Deprecated Thermal Solids
	Floating Isothermal Surface
	Line Temperature Drop

	Bibliography
	Index

