
Sage SCFusion DLL Application Notes

D. Gedeon
Gedeon Associates

February 10, 2025

Contents

1 DLL Overview 1
1.1 Installation . 3
1.2 Exception Handling — Pop-Up Messages vs Silent 3
1.3 AccessForm Window . 3
1.4 Solve and Optimize Status Dialogs 4
1.5 Calling Convention . 4
1.6 Variable Types . 4
1.7 Stream Identifiers . 5
1.8 Interface Files . 5

1.8.1 Data Types . 6
1.8.2 Delphi Example . 8
1.8.3 C# Example . 8
1.8.4 C Example . 8

1.9 Application Examples . 8

2 Function Reference 10
2.1 Sage Version . 10
2.2 Functions for Pop-Up Dialog Control 11
2.3 Functions for Sage Option Settings 13
2.4 Functions for Model-Class I/O 18
2.5 Functions for Visual Settings . 21
2.6 Functions for Getting and Setting Variable Values 22
2.7 Functions for Model Processing 30
2.8 Functions for Managing Model Components and Variables 32
2.9 Functions for Managing Model Connections 36

1 DLL Overview

The purpose of the Sage DLL (dynamic link library) is to provide a way for
another program running under the Windows operating system to access Sage
functionality to open existing Sage model files, modify inputs, read outputs, etc.

1

Originally (1995) Sage was strictly a graphical Windows application (GUI). A
frequent request among users was for a way to run Sage automatically from
another computer program rather than by a human operator. That led to the
creation of the first Sage DLL, released under version 3 (2004). Until recently
there were three separate DLLs for each of the three model classes (Stirling,
Pulse-Tube and Low-T Cooler).

Fast forward 20 years to Sage version 13 and the three model classes have
merged into a single SCFusion model class (Stirling Cycle Fusion) encompassing
the functionality of all three previous model classes. There are both 32 and 64
bit DLLs available for use with application running under the 32 and 64 bit
Windows operating systems (Win32 and Win64):

Win32 DLL Win64 DLL Opens Model Class File Extension
SCFusionLib.dll SCFusionLib64.dll SCFusion .scfn

The SCFusion DLLs cannot directly open model files previously saved under
the Stirling, Pulse-Tube and Low-T Cooler model classes (file extensions .stl,
.ptb, .ltc). To work with those files you must first open the file with the normal
SCFusion Windows application then save it under the new .scfn file extension.

Differences between Win32 and Win64 Both 32 and 64 bit DLLs share
the same model file format so you can use a 32 bit DLL to read a model file
produced by a 64 bit DLL and vice-versa.

There are some differences though in the function arguments supplied and
values returned. Pointer types are 64 bit values (8 bytes) under Win64 compared
to 32 bit (4 bytes) under Win32. Not so obviously, Microsoft depreciated the 80-
bit extended-precision floating-point format to 64-bit double-precision format
under Win64. The Win64 Delphi compiler (used for Sage) went along with
this decision and dropped support for 80-bit extended precision by re-declaring
the Extended data type to Double when compiling for the Win64 platform. The
result is that the solution precision drops from about 18 significant figures under
the Win32 DLLs to about 15 under the Win64 DLLs.

New in Version 13 The identifiers used to store model-component and vari-
able class instances in file streams changed from integer constants (maintained
in separate stream-identifier *.sid files), to the actual class names used in Sage’s
Delphi source code. As a practical matter this means that some arguments
and returned values changed from type integer to PAnsiChar (pointer to null-
terminated string of ANSI characters) in the following functions.

sageCreateChildModel

sageGetSeedSidAt

sageGetVarSid

sageGetModelSid

2

sageGetNegSynapse

sageGetPosSynapse

sageGetConnectorSid

To support this change, new function SaveModelClassInfo allows you to create
an exhaustive list of model-component class names for reference.

1.1 Installation

The Sage DLLs and related files are installed on your computer in the usual
way, by running the Windows Control Panel Add/Remove programs utility
with the distribution CD ROM in the appropriate drive or by double-clicking
the installation program (e.g. setup.exe) from Windows Exporer. Files are
installed in the DLL subdirectory under the Sage installation directory (e.g.
c:\Program Files\Gedeon\Sage13\DLL\). You may access the DLL files from
the installed location or copy them to another location on your computer as
required.

1.2 Exception Handling — Pop-Up Messages vs Silent

Sage DLLs always handle software exceptions that occur within the DLL. When
an exception occurs, some DLL functions pop-up a message dialog window that
notifies you of the problem. This temporarily halts program execution until you
manually click the OK button. Other DLL functions — those beginning with the
sage prefix — handle exceptions silently by returning a nonzero value for a Status
integer that you pass to the function as an argument. When Status returns non-
zero you can read the error message by calling the sageGetLastErrorMsg function.
This allows the calling program to deal with exceptions without the need for
manual button clicking.

The preceding paragraph applies only to exceptions that float up all the
way to the DLL interface level. Some exceptions are resolved internally at a
relatively low level in the Sage code (many subroutines below the DLL inter-
face) by popping-up dialogs that give the user a choice of how to resolve the
exception. For example, to permit extrapolating a thermophysical property be-
yond its tabulated values or to ignore a divide-by-zero error in a user-defined
expression. If you encounter one of these exceptions you will have to manually
click a message-dialog button before control returns to your program. However
if you are willing to risk the consequences you can override this behavior with
the SetIgnoreExprError and SetIgnoreRangeError functions, in effect pre-ignoring
such exceptions in advance.

1.3 AccessForm Window

Sage DLLs work with models using a higher-level data structure known as an
AccessForm. The AccessForm has a visual presence that pops up in the form

3

of a small window whenever you open a Sage model (from a disk file) or create
a new model. The AccessForm window looks like this:

You do not have to pay any attention to the AccessForm window or press any
buttons to close it. It just sits there quietly to confirm that the DLL active.

1.4 Solve and Optimize Status Dialogs

To provide feedback and also give you a means to cancel the solving or optimizing
process the Sage DLLs show the same status dialogs as the Sage GUI whenever
Sage is solving or optimizing a model. After solving or optimizing finishes the
AccessForm closes the dialogs (hides it from view) and returns control to your
program.

1.5 Calling Convention

All Win32 DLL functions use the stdcall calling convention, which means that
parameters are passed in a stack frame, in right-to-left order and that the DLL
cleans up the stack (resets the stack pointer). Your compiler of choice may
require an explicit directive to adhere to this calling convention. Here is a list
of directives that Borland compilers adhere to:

Directive Parameter order Clean-up Passes parameters in registers?
register Left-to-right Routine Yes
pascal Left-to-right Routine No
cdecl Right-to-left Caller No
stdcall Right-to-left Routine No
safecall Right-to-left Routine No

The cdecl convention is likely the default directive for C or C++ compilers. In
Windows, the operating system APIs use stdcall and safecall. Other operating
systems generally use cdecl.

Under Win64 there is only one calling convention so your compiler of choice
will likely ignore any calling convention directives.

1.6 Variable Types

In this document and in the Delphi-Pascal interface files the types of function
arguments and returned values are named according to the following table:

4

Type Name purpose stored as (Win32/Win64)
THandle Windows handle 32/64 bit pointer
NativeInt pointer 32/64 bit pointer
PAnsiChar pointer to null-terminated ANSI string 32/64 bit pointer
Integer integer value 32 bit signed integer
Double real value 8-byte floating point
Extended real value 10-byte/8-byte floating point
Boolean True or False value byte

The var declaration before a function argument means that the argument is
passed by reference, instead of by value. In other words the function expects
the address of some variable, rather than its value.

An ANSI string is a null terminated string of 8-bit ANSI characters. ANSI
strings used to be the standard format for all Windows applications but some
programs are now changing to 16-bit unicode character strings. The Sage DLL
functions require ANSI strings for backward compatibility with earlier versions.
Passing a pointer to a unicode string to a Sage DLL function will cause trou-
ble. Instead convert it to an ANSI string first and then pass a pointer to the
converted string to the DLL function. The Windows system function Multi-
ByteToWideChar converts unicode to ansi strings. The application you are
using to call the Sage DLL may have such a function as well.

1.7 Stream Identifiers

As of version 13 Sage uses the actual class names defined in its Delphi source
code to identify instances of that class that are saved to a disk file. When
loading a model from a disk file, these identifiers enable Sage to figure out what
class type it is reading and call the appropriate load method to read its data.
Several DLL functions take stream identifiers as arguments or return stream
identifier values. Names of stream identifier arguments generally begin with the
prefix ASid.

For purposes of using the DLL the class-name identifiers you may need are
those for model components, connectors and variables. The class names for
model components are accessible with the sageGetModelSid or sageGetSeed-
SidAt functions. Function SaveModelClassInfo also allows you to create an
exhaustive list of model-component class names for reference. Model compo-
nent class names also appear in the hints that appear when hovering over the
tool buttons in the child-model creation palette or the icons in the edit window
of the Sage GUI. Class names for connectors appear in the hints that appear
when hovering over the inter-component connection arrows of the Sage GUI.
Class names for variables are accessible with the sageGetVarSid function.

1.8 Interface Files

In order for your program to link to the Sage DLL you must provide some sort
of interface file that provides necessary information about the structure of the

5

DLL. The format of the interface file depends on the compiler or programming
environment being used to access the DLL. Three sample interface files are
provided with the DLL distribution.

sample SCFusionLib interface files
SCFusionInterface.pas Embarcadero Delphi (Pascal) format
SCFusionLibInterface.cs Microsoft Visual Studio (C#) format
SCFusionLib.h C format

The first interface in Embarcadero Delphi format has been thoroughly tested. If
you are using the DLL within the Delphi environment you can directly reference
SCFusionInterface.pas in your program’s uses statement and be done with it.
The second interface in Microsoft Visual-Studio format has been tested for a
limited set of function calls. The third file based on generic C data types may
require some customization, depending on the application referencing it.

1.8.1 Data Types

Different programming languages have evolved with different names for the same
data types. In the DLL interface files, type names are used for function returned
values and arguments passed to those functions, not necessarily the same names.

Function return types

Delphi Pascal Visual-Studio C# C, C++, . . .
(procedure) void void
Double double double
Extended double long double
PAnsiChar IntPtr char*
NativeInt IntPtr void*
THandle IntPtr void*
Integer int int
Boolean bool bool

In the C# language IntPtr is the name for a generic pointer to an unknown
value — an integer with the same size as a pointer. The C and C++ languages
denote such pointers by void*. In the Sage DLL generic pointers can be Windows
handles or reference data-class instances of variables or model-components.

6

Arguments passed by value (read-only)

Delphi Pascal Visual-Studio C# C, C++, . . .
Double double double
Extended double long double
PAnsiChar string char*
NativeInt IntPtr void*
THandle IntPtr void*
Integer int int
Boolean bool bool

Arguments passed by reference (read-write) In Delphi Pascal such ar-
guments are designated by the var keyword. In the other languages they are
designated by different names. It only makes sense to pass non-pointer values
by reference.

Delphi Pascal Visual-Studio C# C, C++, . . .
var . . . Double ref double double*
var . . . Extended ref double long double*
var . . . Integer ref int int*
var . . . Boolean ref bool bool*

Floating point formats Calling DLL functions involving Double or Ex-
tended types requires some care. The floating point format for the calling
application may differ from the format in the Sage DLL. In some cases the
Win32 SCFusionLib dll will work and the Win64 SCFusionLig64 will not, and
vice-versa, according to the following table.

Win 32 Win 64
Delphi Double 64 bit 64 bit
C-style double 64 bit 64 bit
Delphi Extended 80 bit 64 bit
C-style long double* 80 bit 80 bit

* may also be 64 or 128 bit, depending on compiler

Evidently there may be some issues calling functions involving the Extended
type. In that case you may have to avoid calling those functions.

Your choice of whether to use the Win32 or Win64 DLL may also be deter-
mined by which of those DLL formats the application you are using supports.
Function calling conventions differ for Wini32 and Win64 applications.

As far as the internal calculations within the DLL go, the Win32 DLL is
actually more precise since it uses 80 bit rather than 64 bit floating-point preci-
sion. Higher precision matters when evaluating finit-difference derivatives and
can make the difference between the Sage solver converging or not converging.
So, if possible use the Win32 DLL.

7

1.8.2 Delphi Example

In Delphi format the interface file is a so-called unit file, containing a declaration,
interface section and implementation section. For example, a minimalist Delphi
interface file for only the single DLL function sageSetRealVal would look like
this.

unit SCFusionInterface;

interface

procedure sageSetRealVal(AAccessForm: NativeInt;
AV: NativeInt;
AValue: Double;
var Status: Integer); stdcall;

implementation

procedure sageSetRealVal; external ’SCFusionLib.dll’;

end.

1.8.3 C# Example

The same minimalist interface in C# format would consist of a single declaration
block in an interface file that might look like this:

[DllImport(DLLname)]
public static extern void sageSetRealVal(IntPtr AAccessForm,

IntPtr AV,
double AValue,
ref int Status);

1.8.4 C Example

Similarly in C format it would look like this:

declspec(dllexport)
void stdcall sageSetRealVal(void* AAccessForm,

void* AV,
double AValue,
int* Status);

1.9 Application Examples

Sample applications TestSCFusionLib.exe and SageDLLDemo.exe demonstrate
how to use the Sage DLL (see Testing the DLL). These application were com-
piled from projects under the Embarcadero Delphi programming environment

8

(Pascal language) and Microsoft Visual Studio environment (C# language).
Embarcadero Delphi is also the native environment for the SCFusion DLL it-
self, as well as the SCFusion GUI (graphical user interface). The source code
for these applications reside in the files TestSCFusionForm.pas and SageDLLde-
moForm.cs. Both the test applications have a simple Windows interface. The
interface for TestSCFusionLib derives from the original TestStirlingLib interface
that looked like this:

The two buttons at the top invoke the OpenModel and CloseModel functions.
After clicking the OpenModel button a file-open dialog pops up which allows
you to select the SCFusion model file. After selecting the input file its name is
passed to the DLL OpenModel function which then creates a Sage access form
with a visual presence as illustrated above.

The arrow buttons allow you to “get” or “set” real-valued variable values
(ones that are built-into Sage, not user-defined variables). First you must specify
the model-component name, variable name and qualifier (if any) by typing into
the boxes so labeled. In the case of setting a value (clicking on left-pointing
arrows) you must also type in the value to be assigned. Such as 1.0E-2, 0.01,
etc. When you are getting the value (clicking on right-pointing arrows) the
value will appear in the box to the right of the arrow, after a the Sage solution
is updated. When Sage is in solving mode, the usual Sage “status” dialog pops
up to give you feedback on what Sage is doing. If there is a convergence problem
during the solution some sort of dialog box will pop up to let you know about
it, just as it would under the normal Sage user interface. It is not necessary to
manually click the OK button when the solver converges to resume running the
test application.

The latest TestSCFusionLib.exe has many more testing options than are
shown in the above illustration. It has evolved more buttons for testing new
functions as they have been added to the DLL. The result of clicking these new
buttons is not always obvious and program execution is best monitored with

9

the debugger within the Delphi programming environment so you can follow
program execution. Those without access to the Delphi debugger might want
to inspect the source code (TestSCFusionForm.pas) manually to see additional
comments and examples of how the DLL functions might be called to do various
things.

2 Function Reference

In the first Sage DLL version all functions employed pop-up exception noti-
fication. When silent exception handling was introduced (September 05) the
pre-existing functions were retained for backwards compatibility rather than re-
placed with equivalent silent-exception functions. As a result there are often
two DLL functions that do the same thing, apart from exception handling. The
only difference in their names is the sage prefix.

Functions whose names begin with sage. . . all employ silent exception han-
dling. The last argument is always an integer-valued Status variable passed by
reference. If the function returns with Status set non-zero then some sort of
error condition occured with the error message available as the returned result
of the sageGetLastErrorMsg function. Currently 1 is the only non-zero value
returned in Status although future versions may use different values to denote
different error conditions.

sageGetLastErrorMsg

Arguments:
none

Returns:
PAnsiChar

Returns pointer to the last error message, a null-terminated string within the
DLL. The calling routine need not allocate any memory for the string, except as
needed to assign the string to a local copy. The string starts out as a valid but
empty string and is updated whenever there is an error or exception encountered
in a DLL function that implements silent exception handling. The DLL manages
string memory internally, cleaning up memory used for old strings when updated
by new ones. The function returns a pointer to a valid string whenever the DLL
is loaded.

2.1 Sage Version

GetVersion

Arguments:
none

Returns:
PAnsiChar

Returns the Sage version number corresponding to the DLL.

10

2.2 Functions for Pop-Up Dialog Control

Normally on encountering certain types of math errors during the solution pro-
cess the DLL suspends program execution and pops-up a message dialog giving
you the option to ignore the error by clicking an ignore button. The following
functions allow you to override this behavior, effectively ignoring these math
errors in advance so that no error messages are generated, no message dialog
pops up and execution proceeds with default exception handling. Choosing to
ignore exceptions should be done with care only after you are reasonably certain
that the default exception handling will not adversely affect the accuracy of the
Sage solution.

SetIgnoreExprError

Arguments:
AIgnoreExprError: Boolean

Returns:
none

Sets the way math errors are handled when evaluating user-defined expressions.
Pass AIgnoreExprError = True to ignore such exceptions in advance, allowing
the solution process to continue unimpeded. Pass AIgnoreExprError = False to
restore the default pop-up dialog behavior.

Exceptions of this type are often divide-by-zero errors as a result of a vari-
able that has been temporarily initialized to zero in the denominator of some
expression. This type of error generally clears up as the solution process evolves.
If this is the only type of expression error to be found in your model it is appro-
priate to ignore it. When you ignore the error the default exception handling
generally sets the expression returned result to zero. Except for expression er-
rors in recast inputs where the returned result is set to the most recent valid
value.

GetIgnoreExprError

Arguments:
none

Returns:
Boolean

Returns the math exception handing behavior for user-defined expressions. See
SetIgnoreExprError

SetIgnoreRangeError

Arguments:
AIgnoreRangeError: Boolean

Returns:
none

Sets the way out-of-range extrapolation is handled when evaluating cubic spline
variables or material properties. Pass AIgnoreRangeError = True to ignore
out-of-range extrapolation in advance. Pass AIgnoreRangeError to False to re-
store the default pop-up dialog behavior. This function must be called prior

11

to opening a model or creating new model components. If you subsequently
change the IgnoreRangeError value you need to re-load the Sage model before
it takes effect. That is because the model components have local values of Ig-
noreRangeError designed to reflect what button you press in the pop-up dialog.
That local value is assigned from the DLL value only on load and on creation.

Exceptions of this type are often the result of transient solved temperature
values temporarily outside the range of tabulated thermophysical properties. If
this is the only type of error likely in your model then it is appropriate to ignore
it. If instead you are consistently modeling well above or below the range of
tabulated values a better strategy in the long run might be to increase the data
range of the tabulated data points that are causing the problem. When you
ignore the error the default exception handling extrapolates the data using the
cubic spline function fit to the nearest data points. Errors can grow quickly for
temperatures increasingly outside the range of tabulated data.

GetIgnoreRangeError

Arguments:
none

Returns:
Boolean

Returns the out-of-range interpolation handing behavior assigned to loaded or
newly created model components. See SetIgnoreRangeError

SetIgnoreDemagError

Arguments:
AIgnoreDemagError: Boolean

Returns:
none

Sets the way demagnetization warnings are handled when the magnetic field
applied to a permanent magnet exceeds the coercive force limit. Pass AIgnore-
DemagError = True to ignore the warning in advance. Pass AIgnoreDemagEr-
ror to False to restore the default pop-up dialog behavior. This function must
be called prior to opening a model or creating new model components. If you
subsequently change the IgnoreDemagError value you need to re-load the Sage
model before it takes effect. That is because the model components have local
values of IgnoreDemagError designed to reflect what button you press in the
pop-up dialog. That local value is assigned from the DLL value only on load
and on creation.

GetIgnoreDemagError

Arguments:
none

Returns:
Boolean

Returns the out-of-range interpolation handing behavior assigned to loaded or
newly created model components. See SetIgnoreDemagError

12

SetIgnoreOverfilledError

Arguments:
AIgnoreOverfilledError: Boolean

Returns:
none

Sets the way overfilled-coil warnings are handled when the coil volume of an em-
bedded moving coil exceeds the available volume of the magnetic gap it is moving
in. Pass AIgnoreOverfilledError = True to ignore the warning in advance. Pass
AIgnoreOverfilledError to False to restore the default pop-up dialog behavior.
This function must be called prior to opening a model or creating new model
components. If you subsequently change the IgnoreDemagError value you need
to re-load the Sage model before it takes effect. That is because the model com-
ponents have local values of IgnoreDemagError designed to reflect what button
you press in the pop-up dialog. That local value is assigned from the DLL value
only on load and on creation.

GetIgnoreOverfilledError

Arguments:
none

Returns:
Boolean

Returns the out-of-range interpolation handing behavior assigned to loaded or
newly created model components. See SetIgnoreOverfilledError

2.3 Functions for Sage Option Settings

The Sage GUI has two “Options” dialogs, one for Sage general options and one
for model-class options. These options are saved and later reloaded from ini-
tialization files. Sage loads the model-class options when loading the associated
model input file from either the GUI or DLL. Sage loads the general options as
one of the initialization tasks when the GUI begins execution. But not when
you load the DLL, because there is no corresponding initialization code in the
DLL. So the DLL normally runs with the default general options.

The functions below allow you to read the values of most Sage options and
change them. There are functions for all of the general options and most of
the model-class options, except for changing the model-class dimensional units
individually (“dimensions” tab). To change those, open the model under the
GUI, change the dimensions in the model-class options dialog and save the
model. Or you can try directly changing the values in the model initialization
file (*.sin, *.pin, *.lin). There is one function available to change dimensional
units all at once. The SetDefaultDims function restores all dimensional units to
SI dimensions.

SetDefaultDims

Arguments:
none

Returns:
none

13

Sets DLL dimensional units to default SI dimensions. The Get/SetRealVal and
Get/SetRealPart functions operate in the current dimensional units of unit SiU-
nits which are loaded from a model-specific initialization file during the Open-
Model process. Calling this function after OpenModel will reset the dimensional
units in SiUnits to default SI values.

SetErrScale

Arguments:
AErrScale: Integer

Returns:
none

Sets solver error tolerance scale-factor index. Valid range is (0..8), correspond-
ing to increasing scale factors. Other values will be truncated to the nearest valid
value. The value corresponds to the sliding scale in the Options|Sage|Solver|Convergence
Tolerance dialog box in the graphical interface.

GetErrScale

Arguments:
none

Returns:
Integer

Returns the solver error tolerance scale-factor index. See SetErrScale.

SetMaxTerribIter

Arguments:
AMaxTerribIter: Integer

Returns:
none

Sets the maximum number of terrible-progress solver iterations to be endured
before abandoning the solve process. The default is 5. A “terrible-progress
iteration” is one where the solution convergence error has either been increasing
or not decreasing fast enough for a number of consecutive iterations. A value of
1 ensures at least one terrible-progress iteration is allowed which gives at least
one finite-difference interval update before throwing in the towel.

GetMaxTerribIter

Arguments:
none

Returns:
Integer

Returns the “MaxTerribIter” value. See SetMaxTerribIter.

SetMaxTotalIter

Arguments:
AMaxTotalIter: Integer

Returns:
none

Sets the maximum number of total solver iterations allowed before abandoning
the solve process. The default is 50.

14

GetMaxTotalIter

Arguments:
none

Returns:
Integer

Returns the “MaxTotalIter” value. See SetMaxTotalIter.

SetOptMaxIter

Arguments:
AOptMaxIter: Integer

Returns:
none

Sets the maximum number of iterations allowed during optimization. After
this many iterations the optimizer returns, with the values of optimized model
variables at their values for the final iteration. The default is 100.

GetOptMaxIter

Arguments:
none

Returns:
Integer

Returns the “OptMaxIter” value. See SetOptMaxIter

SetOptMaxStepSolveAttempts

Arguments:
AOptMaxStepSolveAttempts: Integer

Returns:
none

Sets the maximum number of failed solve attempts tolerated during the opti-
mization line-search process. During the line search process the optimizer takes
a step of some length in the search direction (increments optimized variables)
and attempts to solve the model at that point. If the solution fails the opti-
mizer reduces the step length and tries again. If the solver fails after this many
attempts then the optimizer gives up and returns, with the values of optimized
model variables at their values for the last successful iteration. The default is
5.

GetOptMaxStepSolveAttempts

Arguments:
none

Returns:
Integer

Returns the “OptMaxStepSolveAttempts” value. See SetOptMaxStepSolveAt-
tempts

15

SetDFScale

Arguments:
ADFScale: Integer

Returns:
none

Sets the relative step-change limit index for for certain key solved variables.
Valid range is (0..8), corresponding to increasing step sizes allowed per solver
iteration. Other values will be truncated to the nearest valid value. The value
corresponds to the sliding scale in the Options|Sage|Solver|Allowed change per
step dialog box in the graphical interface. Smaller values produce slower con-
vergence that may be more stable. Larger values produce faster convergence
that may be less stable.

GetDFScale

Arguments:
none

Returns:
Integer

Returns the relative step change limit index. See SetDFScale.

SetDisplayEnumDetail

Arguments:
ADisplayEnumDetail: Integer

Returns:
none

Sets the enumerated variable display detail level that will appear in listing files.
The value must be 0 for “name only” or 1 for “full detail”. Other values will be
truncated to the nearest valid value. Enumerated variables are those selected by
name from a list. For example, the “Gas” variable of the root model, containing
a large number of numeric property values (the details).

GetDisplayEnumDetail

Arguments:
none

Returns:
Integer

Returns the enumerated variable display detail level. See SetDisplayEnumDe-
tail.

SetDisplaySigFigs

Arguments:
ADisplaySigFigs: Integer

Returns:
none

Sets the number of significant figures for floating-point outputs that appear in
listing files. Values between 3 and 12 are reasonable. This function has no affect
on Sage’s internal numerical calculations nor on DLL functions like GetRealVal
that retrieve floating-point variable values. Sage employs extended precision

16

variables for its internal calculations but final listing outputs are generally the
result of hundreds of calculations with cumulative round-off and finite-difference
truncation error, the result of which is to reduce precision by several orders of
magnitude.

GetDisplaySigFigs

Arguments:
none

Returns:
Integer

Returns the number of significant figures for floating-point outputs. See SetDis-
playSigFigs.

SetGridInterpOrder

Arguments:
AAccessForm: NativeInt
AGridInterpOrder: Integer

Returns:
none

Sets the computational grid x-interpolation order (axial direction) for non-solved
grid variables in the model within AAccessForm. The value must be 0 for “lin-
ear” interpolation or 1 for “cubic” interpolation. Other values will be truncated
to the nearest valid value. Because it affects a model’s solved values this set-
ting is saved in the initialization file corresponding to the model data file and
restored on re-loading the model. The grid interpolation order must not be set
during processing.

GetGridInterpOrder

Arguments:
none

Returns:
Integer

Returns the computational grid x-interpolation order. See SetGridInterpOrder.

SetGasFileName

Arguments:
AGasFileName: PAnsiChar

Returns:
none

Sets the name of the database file from which gas property data will be read.
AGasFileName must be a fully-qualified file name (including directory path).

GetGasFileName

Arguments:
none

Returns:
PAnsiChar

Returns the fully-qualified file name from which gas property data will be read.
See SetGasFileName.

17

SetSolidFileName

Arguments:
ASolidFileName: PAnsiChar

Returns:
none

Sets the name of the database file from which solid property data will be read.
ASolidFileName must be a fully-qualified file name (including directory path).

GetSolidFileName

Arguments:
none

Returns:
PAnsiChar

Returns the fully-qualified file name from which solid property data will be read.
See SetSolidFileName.

2.4 Functions for Model-Class I/O

These functions deal with the opening and closing of an exist Sage model file or
creating a new model data structure from scratch. You may start from a Sage
model file previously created with the usual Sage SCFusion interface or create
a model entirely using DLL functions.

OpenModel

Arguments:
AHandle: THandle
ASageFileName: PAnsiChar

Returns:
NativeInt

Opens a Sage model file (.scfn file extension) for subsequent use. Generally
the first function of the DLL to be called. OpenModel requires two arguments
AHandle and ASageFileName. ASageFileName is the fully-qualified file name
of the model file to be opened (example: c:\ADirectory\GenericFPSE.scfn) .
This name may be hard-wired into the application or provided as the returned
result of a file-open dialog. The sample program TestSCFusionLib.exe uses
the latter approach. AHandle is the Windows handle (pointer) of the calling
application (Delphi example: Application.Handle) and has the effect of the
calling application owning the Sage access form that will pop up so that both
respond to Windows commands (e.g. minimized) together. Passing 0 for the
AHandle argument appears to work without any adverse affects. This would be
the thing to do if your application has no visual presence (window) associated
with it. The returned result of the call to OpenModel is a pointer to the Sage
access form that provides the functionality for most of the other functions of
the DLL. The calling application must save this pointer (e.g. in a variable
AccessForm) generally to be passed as the first argument to the other functions
of the DLL.

18

sageOpenModel

Arguments:
AHandle: THandle
ASageFileName: PAnsiChar
var Status: Integer

Returns:
NativeInt

Like OpenModel except with silent exception handling. Returns Status = 0 if
successful else Status = 1 with an error message returned by the sageGetLastEr-
rorMsg function.

sageNewModel

Arguments:
AHandle: THandle
var Status: Integer

Returns:
NativeInt

Alternative to sageOpenModel which may be called first to create an access
form with a new root model component without any child model components.
AHandle has the same purpose as in sageOpenModel. Same silent exception
handling as sageOpenModel.

CloseModel

Arguments:
AAccessForm: NativeInt

Returns:
none

Closes the model file previously opened. Generally the last function of the DLL
to be called. CloseModel requires one argument AAccessForm, which is the
returned result of the OpenModel function, as explained above. CloseModel
releases the memory used for the Sage access form. Closing the access form by
clicking on the x button at the top removes the visual window associated with
the access form but does not affect its software data structures. The access-form
functionality remains intact until calling CloseModel.

SaveModel

Arguments:
AAccessForm: NativeInt
ASageFileName: PAnsiChar

Returns:
none

Saves the current model state in the Sage access form to the file ASageFileName,
which must be a fully-qualified file name including directory path. Creates or
overwrites two files, the main model file (e.g. *.scfn) and an initialization file
(e.g. *.scin) holding information about current dimensions in effect.

19

sageSaveModel

Arguments:
AAccessForm: NativeInt
ASageFileName: PAnsiChar
var Status: Integer

Returns:
none

A version of SaveModel with silent exception handling. Created so that an ex-
ception encountered while writing either the main model file or the initialization
file will not halt execution of the calling program.

SaveListing

Arguments:
AAccessForm: NativeInt
AListingFileName: PAnsiChar

Returns:
none

Saves the listing for the current model state in the Sage access form to the file
AListingFileName, which must be a fully-qualified file name including directory
path. The resulting file is an ASCII format text file which may be opened with
any text editor.

SaveTaggedVars

Arguments:
AAccessForm: NativeInt
ALogFileName: PAnsiChar

Returns:
none

Saves user-defined inputs or variables tagged with the ”log” attribute to the file
ALogFileName, which must be a fully-qualified file name including directory
path. Variables tagged with the log attribute appear in mapping or optimization
log files. They are so tagged by checking the ”write to log file” checkbox during
their definition in the standard Sage GUI. The resulting file is an ASCII format
tab-delimited text file that may be opened with any text editor or a spreadsheet
like Excel.

SaveCADVars

Arguments:
AAccessForm: NativeInt
ALogFileName: PAnsiChar

Returns:
none

Similar to SaveTaggedVars except for user-defined inputs or variables tagged
with the ”CAD” attribute. They are tagged with this attribute by checking
the ”CAD variable” checkbox during their definition in the standard Sage GUI.
The CAD attribute provides a way to select inputs or outputs that serve as
driving dimensions in solid models during a subsequent CAD design process.
The resulting file is an ASCII format tab-delimited text file that may be opened
with any text editor or a spreadsheet like Excel.

20

SaveModelClassInfo

Arguments:
AAccessForm: NativeInt
ATxtFileName: PAnsiChar

Returns:
none

New in version 13. Saves an exhaustive list of class-name identifier strings
and default display name of all available model-component classes to the file
ATxtFileName, which must be a fully-qualified file name including directory
path. This list intended for use with other functions (e.g. sageCreateChild-
Model) that require class name identifier strings passed as arguments. The
resulting file is an ASCII format tab-delimited text file that may be opened
with any text editor or a spreadsheet like Excel.

SaveSolutionGrid

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
AGridFileName: PAnsiChar

Returns:
none

Saves solution grid of model component AModel to the file AGridFileName,
which must be a fully-qualified file name including directory path. Includes
grids of all child components plus their connected connectors.

2.5 Functions for Visual Settings

HideAccessForm

Arguments:
AAccessForm: NativeInt

Returns:
none

Makes the AccessForm window invisible.

ShowAccessForm

Arguments:
AAccessForm: NativeInt

Returns:
none

Makes the AccessForm window visible. The AccessForm window is normally
visible (after calling the OpenModel or sageOpenModel functions) but may have
been hidden by the HideAccessForm function.

SetCaptionAccessForm

Arguments:
AAccessForm: NativeInt
ACaption: PAnsiChar

Returns:
none

21

Changes the caption at the top of the AccessForm window to ACaption. Use this
function if you want to change the default caption, which is “using AFileName”,
where AFileName is the file name supplied as an argument to the OpenModel
or sageOpenModel functions.

GetCaptionAccessForm

Arguments:
AAccessForm: NativeInt

Returns:
PAnsiChar

Returns the caption at the top of the AccessForm window.

2.6 Functions for Getting and Setting Variable Values

There are several “set” and “get” routines that can be called any time the Sage
access form is open (between calls to OpenModel and CloseModel) to get or set
values for Sage variables. It is only possible to set input variables. However it is
possible to get any type of variable, input or output. When getting an output
variable the model is first solved, if it is not already in a solved state. Once
solved, the model remains in a solved state during subsequent get calls so that
no further solve processing is required. The model state changes from “solved”
to “not solved” as a result of setting an input variable. After that the next
“Get” call will initiate the solving process, and so forth.

As of Sage version 5.5 (12-07) the DLL implements a quit-after-effort policy
under which the solve process gives up when further effort toward convergence
seems hopeless (see function sageSolveModel). In this case those functions that
implement silent exception handling (functions with sage prefix) return Status =
1 and an appropriate message for retrieval by the sageGetLastErrorMsg function,
giving the calling program the option to deal with the problem. Those functions
that do not implement silent exception handling just pop-up a message dialog
and return control to the calling program after the user presses the OK button,
along with a zero result for the solved variable. Prior to version 5.5 the DLL
solve process would continue iterating forever unless the user pressed the stop
button in the solution status dialog.

Some functions in this section select the variable to “set” or “get” from
its name identifier and the name identifier of the model component in which
it resides. Other functions require a direct pointer to the variable. Variable
pointers may be obtained using the functions documented below (see Functions
for Managing Model Components and Variables).

SetRealVal

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
AValue: Double

Returns:
none

22

Sets a real-valued (floating point) input to the value passed in the AValue pa-
rameter. Operates using the dimensional units currently selected in unit SiUnits
(default SI units unless reset by LoadState or model-options dialog). Parame-
ters AMdlName and AVarName are the model-component and identifier names
of the variable to be changed within the Sage model. For example ’displacer’,
’Xamp’. These are the same names that appear in the Sage GUI display window
or listing. The model-component name can be easily customized using the nor-
mal Sage application interface. Argument AAccessForm is the returned result
of the OpenModel call.

sageSetRealVal

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AValue: Double
var Status: Integer

Returns:
none

Like SetRealVal except selects the Sage variable whose value will be set by
pointer rather than by name and has silent exception handling. Sets the value
of the real variable AV to AValue in current dimensional units.

GetRealVal

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar

Returns:
Double

Returns the value of a real-valued variable in current dimensional units. The
parameters have the same meaning as in SetRealVal. Works with built-in inputs
and outputs as well as user-defined variables.

sageGetRealVal

Arguments:
AAccessForm: NativeInt
AV: NativeInt
var Status: Integer

Returns:
Double

Like GetRealVal except selects the Sage variable whose value will be returned
by pointer rather than by name and has silent exception handling. Returns the
value of the real variable AV in current dimensional units.

23

SetExtendedVal
sageSetExtendedVal
GetExtendedVal
sageGetExtendedVal

Under Win32 DLLs these functions differ from SetRealVal, sageSetRealVal, Ge-
tRealVal, sageGetRealVal because the AValue argument or returned result is in
extended precision (Extended type) instead of double precision (Double type).
Extended-precision values are accurate to about 18 significant figures (in dec-
imal notation) while double precision values are accurate to about 15 figures.
Internally, Sage calculates everything in extended precision but the only time it
is important to do so is for finite-difference derivative approximations. If your
application needs to do the same then these functions are available. Otherwise
the double-precision equivalents are probably sufficiently accurate.

Under Win64 DLLs these functions are equivalent to SetRealVal, sageSe-
tRealVal, GetRealVal, sageGetRealVal because the Extended and Double types
are the same.

SetUserVar

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
AParseString: PAnsiChar

Returns:
none

Sets the defining expression for a user variable to the value encoded in APars-
eString. Arguments AAccessForm, AMdlName and AVarName have the same
meanings as in SetRealVal.

sageSetUserVar

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AParseString: PAnsiChar
var Status: Integer

Returns:
none

Like SetUserVar except selects the Sage variable whose value will be set by
pointer rather than by name and has silent exception handling.

GetUserVarVal

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar

Returns:
Double

24

Returns the real value (result of evaluating the defining expression) of the user-
defined variable named AVarName in the model named AMdlName. GetRealVal
does the same thing and also works for built-in real-valued variables.

sageGetUserVarVal

Arguments:
AAccessForm: NativeInt
AV: NativeInt
var Status: Integer

Returns:
Double

Like GetUserVarVal except selects the Sage variable whose value will be returned
by pointer rather than by name and has silent exception handling.

sageSetIntegerVal

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AValue: Integer
var Status: Integer

Returns:
none

Sets the value of the integer variable AV to AValue.

sageGetIntegerVal

Arguments:
AAccessForm: NativeInt
AV: NativeInt
var Status: Integer

Returns:
Integer

Returns the value of the Integer variable AV.

SetRealPart

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
AQualifier: PAnsiChar
AValue: Double

Returns:
none

Sets a real-part of a multi-valued input variable (e.g. Fourier series). Arguments
AAccessForm, AMdlName and AVarName have the same meanings as in SetRe-
alVal. Argument AQualifier is the qualifier string used to select the appropriate
part to set. For example ’Mean’ or ’Amp.1’ or ’FData.2’, depending on the type
of variable. Function arguments such as ’(0.5)’ are not recognized in qualifier

25

strings. Operates using the dimensional units currently selected in unit SiUnits
(default SI units unless reset by LoadState or model-options dialog). Although
SetRealVal is more direct for a simple single-valued variable, this procedure will
also work. In that case the AQualifier string must be passed as nil.

Setting Fourier series components The recommended way to set values
for Fourier series harmonics is by assigning the sine and cosine coefficients,
rather than amplitude and phase. Say you know the amplitude rn and phase
θn of the n-th harmonic. Rather than directly setting amp.n = rn and arg.n =
θn it is more reliable to set cosine and sine components using the identities

cos.n ≡ rncos(θn)
sin.n ≡ −rnsin(θn)

The reason is that the actual data Sage stores for Fourier Series objects are
the an and bn arrays of cosine and sine coefficients. Amplitude and phase are
calculated on the fly when needed. Setting amplitude and phase involves a
conversion and there are two problems. The first is that phase is indeterminate
when amplitude is zero. So setting arg.n when the current amp.n is zero results
in the values an and bn both set to zero which effectively erases the phase
information. So you should set amplitude before phase to avoid this problem.
The second is the case when amp.n is negative. Setting amp.n prior to setting
arg.n results in the phase getting correctly shifted by 180 degrees but that
information is lost on setting arg.n. So for this case you should set phase prior
to amplitude. Rather than remember these possibilities it is easy to set cosine
and sine coefficients directly, as above, which is always reliable.

sageSetRealPart

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AQualifier: PAnsiChar
AValue: Double
var Status: Integer

Returns:
none

Like SetRealPart except selects the Sage variable whose value will be set by
pointer rather than by name and has silent exception handling.

GetRealPart

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
AQualifier: PAnsiChar

Returns:
Double

Returns a real-part of a multi-valued variable in current dimensional units. The

26

parameters have the same meaning as in SetRealPart except that AQualifier
is interpreted more generally. It is not limited to being a simple identifier
(like ’Mean’) or identifier + subqualifier (like ’Amp.1’). AQualifier can also
include the argument list needed for referencing certain properties of gas or
solid variables (like ’Vsound(300)’). It can also include arguments that are
themselves expressions (like ’Vsound(Gas.T0)’). In fact the only requirement
is that the string ’AVarName.AQualifier’ is a valid expression of the sort that
might be used in a user-defined variable.

sageGetRealPart

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AQualifier: PAnsiChar
var Status: Integer

Returns:
Double

Like GetRealPart except selects the Sage variable whose value will be returned
by pointer rather than by name and has silent exception handling.

SetExtendedPart
sageSetExtendedPart
GetExtendedPart
sageGetExtendedPart

Like SetRealPart, sageSetRealPart, GetRealPart, sageGetRealPart except the
AValue argument or returned result is in extended precision (Extended type)
instead of double precision (Double type). This is only relevant for Win32 DLLs.
For Win64 DLLs the Extended and Double types are identical.

sageSetPairsCount

Arguments:
AAccessForm: NativeInt
APairsVar: NativeInt
ACount: Integer
var Status: Integer

Returns:
none

Re-initializes the number of data pairs within data-pairs or cubic-spline variable
APairsVar. Any pre-existing data values are lost. Why would you want to
do this? In the GUI a user adds interpolation pairs to an input like “Tinit”
(temperature-distribution interpolation pairs) by clicking the “add” button in
the input specification dialog. The GUI replaces the old TPairs structure with a
new one containing the correct number of data pairs. sageSetPairsCount allows
you to do this from the DLL. It is up to you to save any old data values and re-
assign them into the new pairs as needed using the Get/SetRealPart functions.

27

sageGetPairsCount

Arguments:
AAccessForm: NativeInt
APairsVar: NativeInt
var Status: Integer

Returns:
Integer

Returns the number of data pairs within data-pairs or cubic-spline variable
APairsVar. Use sageGetRealPart and sageSetRealPart to get or set independent
and dependent data values using qualifiers ’TData.n’, FData.n’, for n = 1 to
Count. For cubic splines beware that TData values must be in strictly increasing
order and are sometimes restricted to the range [0, 1].

sageSetFSeriesCount

Arguments:
AAccessForm: NativeInt
AFSeriesVar: NativeInt
ACount: Integer
var Status: Integer

Returns:
none

Re-initializes the number of terms within Fourier-series input variable AFSeries-
Var. Any pre-existing term data values are lost. This is useful as the first step in
entering an input Fourier Series containing more terms than the current value.
See comments under the similar function sageSetPairsCount.

sageGetFSeriesCount

Arguments:
AAccessForm: NativeInt
AFSeriesVar: NativeInt
var Status: Integer

Returns:
Integer

Returns the number of terms within Fourier-series variable AFSeriesVar. Use
sageGetRealPart and sageSetRealPart to get or set terms using qualifiers like
’mean’, ’cos.n’, ’sin.n’, ’amp.n’, ’arg.n’, for n = 1 to Count

SetGasName

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
AGasName: PAnsiChar

Returns:
none

Sets the value of the gas variable named AVarName in the model named AMdl-
Name to the gas with the name AGasName in the database file established by
the SetGasFileName procedure.

28

sageSetGasName

Arguments:
AAccessForm: NativeInt
AV: NativeInt
AGasName: PAnsiChar
var Status: Integer

Returns:
none

Like SetGasName except selects the gas variable whose name value will be set
by pointer rather than by name and has silent exception handling.

GetGasName

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar

Returns:
PAnsiChar

Returns the gas identifier name for the gas variable named AVarName in the
model named AMdlName.

sageGetGasName

Arguments:
AAccessForm: NativeInt
AV: NativeInt
var Status: Integer

Returns:
PAnsiChar

Like GetGasName except selects the gas variable whose name value will be
returned by pointer rather than by name and has silent exception handling.

SetSolidName

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar
ASolidName: PAnsiChar

Returns:
none

Sets the value of the solid variable named AVarName in the model named AMdl-
Name to the solid with the name ASolidName in the database file established
by the SetSolidFileName procedure.

29

sageSetSolidName

Arguments:
AAccessForm: NativeInt
AV: NativeInt
ASolidName: PAnsiChar
var Status: Integer

Returns:
none

Like SetSolidName except selects the solid variable whose name value will be
set by pointer rather than by name and has silent exception handling.

GetSolidName

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
AVarName: PAnsiChar

Returns:
PAnsiChar

Returns the solid identifier name for the solid variable named AVarName in the
model named AMdlName.

sageGetSolidName

Arguments:
AAccessForm: NativeInt
AV: NativeInt
var Status: Integer

Returns:
PAnsiChar

Like GetSolidName except selects the solid variable whose name value will be
returned by pointer rather than by name and has silent exception handling.

2.7 Functions for Model Processing

These functions can be used to solve or optimize the model. Normally solving
is an automatic part of getting a variable value but there is a sageSolveModel
function available anyway, in case you need it.

ReinitializeModel

Arguments:
AAccessForm: NativeInt

Returns:
none

Reinitializes the model in AAccessForm. This is useful if you have just changed
a variable value, such as the working gas, which throws an existing solution into
a state from which the solver cannot recover.

30

sageSolveModel

Arguments:
AAccessForm: NativeInt
var Status: Integer

Returns:
none

Solves the model (invokes the Sage solver to iterate implicit model variables
until convergence). Solving is done automatically, when necessary, as part of
the sageGet...Val functions (sageGetRealVal, sageGetRealPart, etc.) Calling this
procedure will update the solution prior to calling any sageGet...Val functions.

The DLL determines the error tolerance for solution convergence automat-
ically, subject to a scale factor defined by the current value of ErrScale (see
functions Set/GetErrScale).

As of Sage version 5.5 (12-07) the solve process gives up when further ef-
fort toward convergence seems hopeless, as determined by the current values
of MaxTerribIter and MaxTotalIter (see functions Set/GetMaxTerribIter and
Set/GetMaxTotalIter). In this case, or for any other exception, this function
returns Status = 1 and logs the appropriate error message for retrieval by the
sageGetLastErrorMsg function, giving the calling program the option to deal with
the problem.

OptimizeModel

Arguments:
AAccessForm: NativeInt
ALogFileName: PAnsiChar
AIdString: PAnsiChar

Returns:
none

Optimize the model in AAccessForm. ALog filename is a fully-qualified file name
of the file that will contain the optimization log information in ASCII text for-
mat. If a file by that name already exists then it will be overwritten. AIdstring
will appear in the log-file header and also in the caption of the optimization
status dialog.

The optimization process returns control to the calling program after con-
vergence. Whether or not convergence is achieved depends to some extend on
the solve processes that occur as part of optimization, which are subject to the
current values of ErrScale, MaxTerribIter and MaxTotalIter (see above). The
optimization process terminates when the number of iterations exceeds the con-
stant MaxOptIter (see functions Set/GetMaxOptIter). In this event a message
dialog pops up and control returns to the calling program after the user presses
the stop button (however, see companion function below).

31

sageOptimizeModel

Arguments:
AAccessForm: NativeInt
ALogFileName: PAnsiChar
AIdString: PAnsiChar
var Status: Integer

Returns:
none

Like the OptimizeModel function except silent exception handling. If the opti-
mization terminates due to exceeding the maximum number of iterations or for
any other reason, this function returns Status = 1 and logs the appropriate er-
ror message for retrieval by the sageGetLastErrorMsg function, giving the calling
program the option to deal with the problem.

IsSolved

Arguments:
AAccessForm: NativeInt

Returns:
Boolean

Returns true if solution converged successfully.

IsOptimized

Arguments:
AAccessForm: NativeInt

Returns:
Boolean

Returns true if optimization converged successfully.

2.8 Functions for Managing Model Components and Vari-
ables

sageGetRoot

Arguments:
AAccessForm: NativeInt
var Status: Integer

Returns:
NativeInt

Returns pointer to root model of AAccessForm

sageCreateChildModel

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
AsidChild: PAnsiChar
ADisplayPointX: Integer
ADisplayPointY: Integer
var Status: Integer

Returns:
NativeInt

32

Creates a child model of AParentModel and returns a pointer to it. AParent-
Model is a pointer that may be the result of a previous call to CreateChildModel
or obtained from functions GetRoot or GetChildModel. AsidChild is the class
name identifier string for the child model class to be created (see Stream Iden-
tifiers). ADisplayPointX and Y are the screen coordinates at which the model
component will be displayed if later opened in the usual Sage GUI.

Note AsidChild type changed from Integer to PAnsiChar in Sage version 13.

sageDeleteModel

Arguments:
AAccessForm: NativeInt
ADoomed: NativeInt
var Status: Integer

Returns:
none

Deletes model component ADoomed if possible. ADoomed must be a user-
created model component (not built in) and not externally connected to other
model components, although it may have internal connections among child
model components.

sageGetModelByName

Arguments:
AAccessForm: NativeInt
AMdlName: PAnsiChar
var Status: Integer

Returns:
NativeInt

Returns a pointer to the model component named AMdlName in AAccessForm.

sageGetVarByName

Arguments:
AAccessForm: NativeInt
AMdl: NativeInt
AVarName: PAnsiChar
var Status: Integer

Returns:
NativeInt

Returns a pointer to the variable named AVarName in model component AMdl.
in AAccessForm

sageGetChildModelCount

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
var Status: Integer

Returns:
Integer

33

Returns the number of child model components within AParentModel. Only
counts first-generation children.

sageGetChildModelAt

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
AIndex: Integer
var Status: Integer

Returns:
NativeInt

Returns a pointer to the child model components at AIndex of AParentModel’s
child-model collection. Applies only to first-generation child models. Indexing
is zero-based. Valid indices are AIndex = 0..Count-1, where Count is the value
returned by sageGetChildModelCount. Returns zero if AIndex is out of range.

sageGetSeedPodCount

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
var Status: Integer

Returns:
Integer

Returns the number of SeedPods (tab pages) in the child-model creation palette
of AParentModel.

sageGetSeedCountAt

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
APodIndex: Integer
var Status: Integer

Returns:
Integer

Returns the number of seeds in the SeedPod at APodIndex of AParentModel’s
child creation palette. Indexing is zero-based. Valid indices are APodIndex =
0..Count-1, where Count is the value returned by sageGetSeedPodCount.

sageGetSeedSidAt

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
APodIndex: Integer
ASeedIndex: Integer
var Status: Integer

Returns:
PAnsiChar

Returns the class-name stream identifier of the seed at ASeedIndex of SeedPod

34

APodIndex of AParentModel’s child creation palette. Indexing is zero-based.
Valid indices are APodIndex = 0..PodCount-1, where PodCount is the value
returned by sageGetSeedPodCount and ASeedIndex = 0..SeedCount-1, where
SeedCount is the value returned by sageGetSeedCount. A child model compo-
nent of this type can be then created using the sageCreateChildModel function.

Note Return type changed from Integer to PAnsiChar in Sage version 13.

sageSetModelName

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
AName: PAnsiChar
var Status: Integer

Returns:
none

Sets the name of Amodel to AName

sageGetModelName

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
var Status: Integer

Returns:
PAnsiChar

Returns the name of AModel.

sageGetModelSid

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
var Status: Integer

Returns:
PAnsiChar

Returns the class-name stream identifier of AModel. Each model component
type has a unique class name. (see Stream Identifiers).

Note Return type changed from Integer to PAnsiChar in Sage version 13.

sageGetVarCount

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
var Status: Integer

Returns:
Integer

Returns the number variables within AParentModel.

35

sageGetVarAt

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
AIndex: Integer
var Status: Integer

Returns:
NativeInt

Returns a pointer to variable at AIndex of AParentModel’s variable collection.
Valid indices are AIndex = 0..Count-1, where Count is the value returned by
sageGetVarCount. Returns zero if AIndex is out of range.

sageGetVarName

Arguments:
AAccessForm: NativeInt
AVar: NativeInt
var Status: Integer

Returns:
PAnsiChar

Returns the name identifier of AVar.

sageGetVarSid

Arguments:
AAccessForm: NativeInt
AVar: NativeInt
var Status: Integer

Returns:
PAnsiChar

Returns the class-name stream identifier of AVar. Each type of variable TReal-
Var, TParseVar (user var), TIntegerVar, TFSeriesVar, etc., has a unique class
name. (see Stream Identifiers).

Note Return type changed from Integer to PAnsiChar in Sage version 13.

2.9 Functions for Managing Model Connections

In order to understand the functions of this section you have to understand Sage
terminology for the connections between model components. If you are familiar
with the Sage GUI you understand that model components appear as icons
in the edit window and connections between them appear as numbered arrows
pointing to the right (positive direction) or left (negative direction). Matching
numbers denote connections.

These numbered arrows correspond to what the Sage DLL calls synapses,
because they are the link through which information flows between model com-
ponents. The actual connectors are the invisible objects that perform the math-
ematical duties required to connect two synapses together. At least in Sage
parlance. Think of a connector as residing between two model components, a

36

negative model component and a positive model component. The connection
synapse may belong to those negative or positive models or to child model com-
ponents, in which case the synapses are displayed at the parent model level in
the GUI, as illustrated below. Even though it is possible to physically re-arrange
connected model components in any relative orientation you wish in the GUI,
it is necessary to think of them arranged in this standard orientation for the
function terminology to make sense.

Display LevelConnectorParent
Model

Parent
Model

Neg
Model

Neg Synapse Pos Synapse
Pos

Model
Child Level

sageGetNegSynapse

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
AsidCnct: PAnsiChar
AOccur: Integer
var Status: Integer

Returns:
NativeInt

Returns a handle to a Neg facing synapse (TSynapse instance) for AModel,
whose ValidCnctType class-name stream identifier is AsidCnct. (see Stream
Identifiers). In case of multiple such instances (e.g. TFlowReverser), AOccur =
1 selects the first, AOccur = 2 the second, and so forth. Neg facing means has
a negative (left) pointing arrow in the visual display.

Note AsidCnct type changed from Integer to PAnsiChar in Sage version 13.

sageGetPosSynapse

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
AsidCnct: PAnsiChar
AOccur: Integer
var Status: Integer

Returns:
NativeInt

Similar to sageGetNegSynapse except for pos facing synapse. Pos facing means
has a positive (right) pointing arrow in the visual display.

37

sageSynapsesCompatible

Arguments:
AAccessForm: NativeInt
ASynapse1: NativeInt
ASynapse2: NativeInt
var Status: Integer

Returns:
Boolean

Returns true if ASynapse1 and ASynapse2 are compatible with each other for
purposes of a pending connection or disconnection. Otherwise returns false.
Returns Status = 1 if the synapses are not compatible with the reason why
posted as the LastErrorMsg.

sageConnectSynapses

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
ASynapse1: NativeInt
ASynapse2: NativeInt
var Status: Integer

Returns:
none

Connects together two oppositely oriented synapses ASynapse1 and ASynapse2
under common parent AParentModel. In the Sage visual interface AParent-
Model is the component within which the connector arrows will appear. Re-
turns Status = 0 if successful. Returns Status = 1 if the connection cannot
not be made with the reason why posted as the LastErrorMsg. An invisible
TConnector instance is created in the process.

sageDisconnectSynapses

Arguments:
AAccessForm: NativeInt
ASynapse1: NativeInt
ASynapse2: NativeInt
var Status: Integer

Returns:
none

Disconnects synapses ASynapse1 and ASynapse2. Returns Status = 0 if suc-
cessful. Otherwise returns Status = 1 with the reason why posted as the LastEr-
rorMsg. An invisible TConnector instance is destroyed in the process.

sageGetSynapseConnectedTo

Arguments:
AAccessForm: NativeInt
AModel: NativeInt
AConnector: NativeInt
var Status: Integer

Returns:
NativeInt

38

Returns a pointer to the synapse of AModel connected to connector AConnector.
Returns zero if no such synapse exists. One of a series of functions useful for
tracing connections within existing model structures. For example, you might
use sageGetConnectorAt to get AConnector, then sageGetConnectedNegMdl
or sageGetConnectedPosMdl to get AModel, then this function to return the
synapse involved in the connection.

sageGetConnectorCount

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
var Status: Integer

Returns:
Integer

Returns the number of active connections existing within AParentModel. In
the GUI, these are the invisible components “between” the numbered arrows in
AParentModel’s edit window.

sageGetConnectorAt

Arguments:
AAccessForm: NativeInt
AParentModel: NativeInt
AIndex: Integer
var Status: Integer

Returns:
NativeInt

Returns a pointer to the connector at AIndex of AParentModel’s child-model
collection. Applies only to first-generation connectors. Indexing is zero-based.
Valid indices are AIndex = 0..Count-1, where Count is the value returned by
sageGetConnectorCount. Returns zero if AIndex is out of range.

sageGetConnectorSid

Arguments:
AAccessForm: NativeInt
AConnector: NativeInt
var Status: Integer

Returns:
PAnsiChar

Returns the class-name stream identifier of AConnector.

Note Return type changed from Integer to PAnsiChar in Sage version 13.

sageGetConnectedNegMdl

Arguments:
AAccessForm: NativeInt
AConnector: NativeInt
var Status: Integer

Returns:
NativeInt

39

Returns a pointer to the model connected on the “negative” side of Aconnector.
Of the pair of connected model components, this is the one with the positive
directed (right pointing) arrow in the GUI.

sageGetConnectedPosMdl

Arguments:
AAccessForm: NativeInt
AConnector: NativeInt
var Status: Integer

Returns:
NativeInt

Returns a pointer to the model connected on the “positive” side of Aconnector.
Of the pair of connected model components, this is the one with the negative
directed (left pointing) arrow in the GUI.

40

Index

CloseModel, 17
GetCaptionAccessForm, 19
GetDFScale, 13
GetDisplayEnumDetail, 14
GetDisplaySigFigs, 14
GetErrScale, 11
GetExtendedPart, 24
GetExtendedVal, 21
GetGasFileName, 15
GetGasName, 26
GetGridInterpOrder, 15
GetIgnoreDemagError, 10
GetIgnoreExprError, 8
GetIgnoreOverfilledError, 10
GetIgnoreRangeError, 9
GetMaxTerribIter, 12
GetMaxTotalIter, 12
GetOptMaxIter, 12
GetOptMaxStepSolveAttempts, 13
GetRealPart, 24
GetRealVal, 20
GetSolidFileName, 15
GetSolidName, 27
GetUserVarVal, 22
GetVersion, 8
HideAccessForm, 18
IsOptimized, 29
IsSolved, 29
OpenModel, 16
OptimizeModel, 28
ReinitializeModel, 28
SaveCADVars, 18
SaveListing, 17
SaveModel, 17
SaveSolutionGrid, 18
SaveTaggedVars, 18
SetCaptionAccessForm, 19
SetDFScale, 13
SetDefaultDims, 11
SetDisplayEnumDetail, 13
SetDisplaySigFigs, 14
SetErrScale, 11
SetExtendedPart, 24

SetExtendedVal, 21
SetGasFileName, 15
SetGasName, 26
SetGridInterpOrder, 14
SetIgnoreDemagError, 9
SetIgnoreExprError, 8
SetIgnoreOverfilledError, 10
SetIgnoreRangeError, 9
SetMaxTerribIter, 11
SetMaxTotalIter, 12
SetOptMaxIter, 12
SetOptMaxStepSolveAttempts, 12
SetRealPart, 23
SetRealVal, 20
SetSolidFileName, 15
SetSolidName, 27
SetUserVar, 21
ShowAccessForm, 19
sageConnectSynapses, 35
sageCreateChildModel, 30
sageDeleteModel, 30
sageDisconnectSynapses, 35
sageGetChildModelAt, 31
sageGetChildModelCount, 31
sageGetConnectedNegMdl, 37
sageGetConnectedPosMdl, 37
sageGetConnectorAt, 36
sageGetConnectorCount, 36
sageGetConnectorSid, 37
sageGetExtendedPart, 24
sageGetExtendedVal, 21
sageGetFSeriesCount, 25
sageGetGasName, 26
sageGetIntegerVal, 22
sageGetLastErrorMsg, 7
sageGetModelByName, 30
sageGetModelName, 32
sageGetModelSid, 32
sageGetNegSynapse, 34
sageGetPairsCount, 25
sageGetPosSynapse, 35
sageGetRealPart, 24
sageGetRealVal, 21

41

sageGetRoot, 29
sageGetSeedCountAt, 31
sageGetSeedPodCount, 31
sageGetSeedSidAt, 32
sageGetSolidName, 27
sageGetSynapseConnectedTo, 36
sageGetUserVarVal, 22
sageGetVarAt, 33
sageGetVarByName, 30
sageGetVarCount, 33
sageGetVarName, 33
sageGetVarSid, 33
sageNewModel, 16
sageOpenModel, 16
sageOptimizeModel, 29
sageSaveModel, 17
sageSetExtendedPart, 24
sageSetExtendedVal, 21
sageSetFSeriesCount, 25
sageSetGasName, 26
sageSetIntegerVal, 22
sageSetModelName, 32
sageSetPairsCount, 25
sageSetRealPart, 23
sageSetRealVal, 20
sageSetSolidName, 27
sageSetUserVar, 22
sageSolveModel, 28
sageSynapsesCompatible, 35

42

