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A model that illustrates how the motion snubber component limits the motion of a 
reciprocating mass driven by a forcing function of increasing amplitude. The Sage model 
looks like this: 
 

 
 
The motion snubber component was introduced in Sage v10 as a way to simulate the 
displacer of a split-cycle stirling cooler hitting end stops during the cooldown period when 
it is not absorbing much PV power and tends to be over-driven. This model just illustrates 
how the motion snubber component works without the rest of the stirling cooler 
components. 
 
The root model defines the top level model inputs, two of which are particularly  
important for this model, the frequency and number of time nodes in the computational 
grid 
 
Inputs 
  NTnode        number time nodes                   11 
  Freq             frequency (Hz)                           6.000E+01 
 
The number of time nodes is higher than the usual 7 recommended for models with 
sinusoidally varying solution quantities. More nodes helps the solution resolve the abrupt 
forces that occur when the reciprocator hits the displacement limits. 11 time nodes allows 
the solver to resolve up to 5 harmonics in the Fourier series expansion of the reciprocator 
motion. 
  
The motion snubber imposes displacement limits on the reciprocator, according to 
these inputs: 
 
  Mscale         snubbed mass scale (kg)                   1.000E-01 
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  Xlimit           amplitude limit (m)                              1.000E-02 
  Sp               snub factor at X = Xlimit  (NonDim)     1.000E+00 
  Sn               snub factor at X = -Xlimit (NonDim)     1.000E+00 
  Kfrac           spring content fraction (NonDim)         1.000E-01 
 
The Sage User’s guide contains more information about these inputs. For present 
purposes suffice it to say that the motion snubber will do its best to limit the motion of the 
attached reciprocator to ±0.01 m by imposing an energy dissipating force beyond those 
limits scaled for stopping a 0.1 kg ballistic mass (which happens to be the mass of the 
reciprocator). That force will have a relative spring content of 10%. 
 
The reciprocator represents a reciprocating mass driven by an internal forcing function 
Its inputs and outputs are:  
 
Inputs 
  Mass           reciprocating mass (kg)                1.000E-01 
  FF               forcing function (N, rad)                0.000E+00... 
    ( 2.500)E+02 Amp 
    ( 0.000)E+00 Arg 
Outputs 
  FX               displacement (m, rad)                    -3.338E-05... 
    ( 1.115,  0.019,  0.140,  0.035,  0.044)E-02 Amp 
    (-1.974, -2.971,  2.680,  1.913,  0.948)E+00 Arg 
  F                boundary force (N, rad)                  -4.416E-18... 
    ( 2.378,  0.106,  1.791,  0.786,  1.581)E+02 Amp 
    ( 2.482,  0.171, -0.462, -1.229, -2.194)E+00 Arg 
  W                boundary power inflow (W, rad)           -4.834E+02... 
    ( 0.918,  5.470,  2.676,  6.324,  3.669)E+02 Amp 
    ( 0.237,  1.258, -1.293, -1.042,  2.712)E+00 Arg 
 
The reciprocator is over-driven. Without the motion snubber connection it would have a 
free amplitude of 0.176 m, by solving Newton’s law in terms of force amplitude F1, mass 
m, motion amplitude x1 and angular frequency ω = 2πf. 
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With the motion snubber connected the resulting motion amplitude is lower and also non-
sinusoidal, according to Fourier series output FX. 
 
It is difficult to visualize the resulting motion from the Fourier series values alone so it is 
helpful to use the File|Save Solution Grid menu item to save the grid to a text file where 
you can examine it in detail. This plot below shows the motion solutions plotted in MS 
Excel for a sequence of increasing forcing functions, with the above case being the last 
curve plotted. 
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The first plot for forcing function amplitude  = 125 N is essentially unrestricted free 
sinusoidal motion within the snubbing limits of ± 0.1 m. The next plot for FF.Amp = 125 N 
is just barely affected by the limits. It has a free amplitude of 0.106 m, just beyond the 
limits. The final two plots at FF.Amp = 200 and 250 N are increasingly overdriven. The 
last plot has a free amplitude of 0.176 m, as noted above but the motion snubber clamps 
it down within the limits. 
 
For forcing functions much higher than FF.Amp = 250 the motion snubber begins to 
produce erratic results, allowing some motion beyond the limits and spurious wiggles in 
the solution. Experimenting with the motion snubber inputs (especially Mscale) should 
help to remedy such problems in a practical model. 
 
Motion snubber input Kfrac may be of some use in calibrating the snubber model to 
actual data. A higher value of Kfrac corresponds to more resilient end limits with a higher 
coefficient of restitution. A lower value of Kfrac corresponds to less resilient end limits 
that absorb more energy.  


