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A model of a thermoacoustic singing-tube, open at both ends with the
stack actively heated at one end and cooled at the other by through air flow.
The basis for this model was a singing tube made in the 1990’s by John
Corey of CFIC Inc., where the stack heating was accomplished by focused
solar radiation through transparent tube walls — hence the model name
SolarPanPipe. The cooling air flow was induced by free convection with the
hot end of the stack oriented upward.The idea likely originated in earlier
work by John Wheatley and Greg Swift at Los Alamos National Laboratory
and before that in the writings of Lord Rayleigh. I myself once made such a
machine that heated the stack by a propane flame burning at the hot end of
the stack. Here is a schematic of the physical layout:

stack hot ductcold duct
airflow

solar radiation

In the Sage model the components are arranged in order of occurrence
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with cold parts at the top of the edit window and hot parts at the bottom:

Components upstream of the cold duct and downstream of the hot duct
are fictitious (non-physical) components required to implement the acoustic
boundary conditions at the open ends and the cooling flow. The pistons
attached to the gas spaces actually drive the acoustics within the ducts,
but Sage’s optimizer adjusts their amplitudes and relative phase so as to
be consistent with the required acoustic impedance boundary conditions of
open-ended tubes. More on that below. The free convection pump compo-
nent supplies a dc flow through the device, cooled by the cooling buffer heat
exchanger before entering the cold duct. The acoustical power output is just
the mechanical power delivered to the two pistons once their motions are
adjusted to satisfy the open-end impedance boundary conditions.

The spacing between the plates in the stack is of the order of the thermal
diffusion length in the gas, so accurate modeling requires the complex Nusselt
number formulation. Therefore, the stack is modeled as rectangular channels,
which employ the complex Nusselt number formulation, rather than as a foil
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matrix, which employs the real-valued low Valensi number limit.

Open End Impedance

The variable volume spaces at the duct open ends represent the atmosphere
immediately outside the ducts. The volumetric displacements of the two pis-
tons represent the displacements of the radiated sound to parts beyond. The
phasing of one of these pistons is arbitrary (cold end BC in this case) but the
amplitude and phase of the other must be set to satisfy the acoustic condi-
tions at the tube ends. The operating frequency must also be set to match
acoustic conditions, because a thermoacoustic resonator is a self-exciting de-
vice that determines its own frequency. So there are four variables to solve
for, subject to two acoustic impedance boundary conditions.

Morse and Ingard ([2], section 9.1, pp. 467–474) discuss the issue of
impedance in acoustical ducts. Assuming the pressure and velocity at the
desired point of interest in a plane standing are given by the complex for-
mulation pe−iωt and ue−iωt, the impedance is just the ratio of the complex
amplitudes p/u. They put this in the form

p/u = ρc(θ − iχ) (1)

and then show some curves in figure 9.2, derived from [3], on the basis of
which the following approximations appear reasonable at the open end of a
tube of diameter D for a wave of wavelength λ

θ ≈ π2

4
(D/λ)2 (2)

χ ≈ 1.927D/λ (3)

These approximations hold only for D/λ < 1/10. As D/λ approaches zero,
these impedance values serve to reflect most of the sound back into the tube
with a pressure node just outside the tube end. Consequently, long narrow
tubes radiate sound poorly.

As modeled by Sage, the acoustic impedance at an open end is formulated
in terms of the pressure and boundary mass flow rate of the variable volume
space to which the open tube end is attached. Complex pressure amplitude
p is just pc + ips where pc and ps are the cosine and sine coefficients of
the first harmonic of the FPMean Fourier series. Velocity amplitude u is
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(1/ρA)(ṁc + iṁs) where ṁc and ṁs are the cosine and sine coefficients of the
first harmonic of the FRhoUANeg Fourier series. A velocity Fourier series is
not directly available. So the impedance at the open end is just

p/u =
ρA

ṁ2
[(pcṁc + psṁs) − i(pcṁs − psṁc)] (4)

Equating the right sides of equations (1) and (4), substituting the above
approximations for θ and χ, then πD2/4 for A and c/f for λ and simplifying
gives the final form of the open-end impedance constraints used in the model:

c

f2ṁ2
(pcṁc + psṁs) = π (5)

D

fṁ2
(pcṁs − psṁc) = 2.45 (6)

Optimization

User-defined variables in the cold end space and hot end space implement the
above impedance constraints and Sage’s optimizer solves both piston ampli-
tudes Xamp and hot piston phase Xphase in order to satisfy the constraints.

In addition to that the model is set up to optimize the lengths (Length)
of the cold and hot ducts, the stack dimensions (Wchan, Nchan, Length)
and radiation absorber heat exchanger dimensions (Wchan, Nchan), recasting
Hchan inputs to equal Wchan for both. A few geometrical constraints require
the open area of the stack and radiation absorber equal to the duct open area.
Sage’s optimizer also adjusts the cooling flow mass flow rate (FRhoUA.Mean
of the free convection pump) with the objective of maximizing the acoustical
power output(user variable Wrad).

Convergence

This is a highly nonlinear model that does not converge as reliably as sim-
pler models. Convergence may fail after significant changes to certain input
values or attempting to solve from a re-initialized state. If this happens
one strategy is to revert to a previously converged model and make smaller
changes in succession. If that is not possible then try temporarily reducing
the FRhoUA.Mean input of the free convection pump component or the Xamp
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values of the cold end BC and hot end BC piston component. Then gradually
increase them again after successful convergence.
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